Skip to main content
Log in

Functional expression of a human GDP-l-fucose transporter in Escherichia coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes.

Results

The heterologous expression of the recombinant and codon-adapted human GDP-l-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-l-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3H-GDP-l-fucose with a Vmax of 8 pmol/min mg with a Km of 4 µM. The functional expression of SLC35C1 in GDP-l-fucose overproducing E. coli led to the export of GDP-l-fucose to the culture supernatant.

Conclusions

The export of GDP-l-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeijon C, Robbins PW, Hirschberg CB (1996) Molecular cloning of the Golgi apparatus uridine diphosphate-N-acetylglucosamine transporter from Kluyveromyces lactis. Proc Natl Acad Sci USA 93:5963–5968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berninsone P, Eckhardt M, Gerardy-Schahn R, Hirschberg CB (1997) Functional expression of the murine Golgi CMP-sialic acid transporter in Saccharomyces cerevisiae. J Biol Chem 272:12616–12619

    Article  CAS  PubMed  Google Scholar 

  • Caffaro CE, Hirschberg CB (2006) Nucleotide sugar transporters of the Golgi apparatus. Acc Chem Res 39:805–812

    Article  CAS  PubMed  Google Scholar 

  • Chan KF, Shahreel W, Wan C, Teo G, Hayati N, Tay SJ, Tong WH, Yang Y, Rudd PM, Zhan P, Song Z (2016) Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Biotechnol J 11:399–414

    Article  CAS  PubMed  Google Scholar 

  • Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307:1778–1781

    Article  CAS  PubMed  Google Scholar 

  • Facey SJ, Kuhn A (2004) Membrane integration of E. coli model membrane proteins. Biochim Biophys Acta 1694:55–66

    Article  CAS  PubMed  Google Scholar 

  • Guillen E, Abeijon C, Hirschberg CB (1998) Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Proc Natl Acad Sci USA 95:7888–7892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmus Y, Denecke J, Yakubenia S, Robinson P, Lühn K, Watson DL, McGrogan PJ, Vestweber D, Marquardt T, Wild MK (2006) Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood 107:3959–3966

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg CB (2001) Golgi nucleotide sugar transport and leukocyte adhesion deficiency II. J Clin Invest 108:3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschberg CB, Robbins PW, Abeijon C (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67:49–69

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Hirschberg CB (2013) Developmental diseases caused by impaired nucleotide sugar transporters. Glycoconj J 30:5–10

    Article  PubMed  Google Scholar 

  • Liu L, Xu YX, Hirschberg CB (2010) The role of nucleotide sugar transporters in development of eukaryotes. Semin Cell Dev Biol 21:600–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Hou X, Shi S, Körner C, Stanley P (2010) Slc35c2 promotes Notch1 fucosylation and is required for optimal signaling in mammalian cells. J Biol Chem 285:36245–36254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Körner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28:73–76

    PubMed  Google Scholar 

  • Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28:69–72

    PubMed  Google Scholar 

  • Lühn K, Laskowska A, Pielage J, Klambt C, Ipe U, Vestweber D, Wild MK (2004) Identification and molecular cloning of a functional GDP-fucose transporter in Drosophila melanogaster. Exp Cell Res 301:242–250

    Article  PubMed  Google Scholar 

  • Ma B, Simala-Grant JL, Taylor DE (2006) Fucosylation in prokaryotes and eukaryotes. Glycobiology 16:158R–184R

    Article  CAS  PubMed  Google Scholar 

  • Maggioni A, von Itzstein M, Gerardy-Schahn R, Tiralongo J (2007) Targeting the expression of functional murine CMP-sialic acid transporter to the E. coli inner membrane. Biochem Biophys Res Commun 362:779–784

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, Hayashi N, Miyoshi E (2007) A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology 17:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Münster AK, Eckhardt M, Potvin B, Mülenhoff M, Stanley P, Gerardy-Schahn R (1998) Mammalian cytidine 5′-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc Natl Acad Sci USA 95:9140–9145

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastuszak I, Ketchum C, Hermanson G, Sjoberg EJ, Drake R, Elbein AD (1998) GDP-l-fucose pyrophosphorylase. purification, cDNA cloning, and properties of the enzyme. J Biol Chem 273:30165–30174

    Article  CAS  PubMed  Google Scholar 

  • Pines O, Inouye M (1999) Expression and secretion of proteins in E. coli. Mol Biotechnol 12:25–34

    Article  CAS  PubMed  Google Scholar 

  • Rosen BP, Tsuchiya T (1979) Preparation of everted membrane vesicles from Escherichia coli for the measurement of calcium transport. Methods Enzymol 56:233–241

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatias T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York, NY

    Google Scholar 

  • Tiralongo J, Maggioni A (2011) The targeted expression of nucleotide sugar transporters to the E. coli inner membrane. Methods Mol Biol 705:237–249

    Article  CAS  PubMed  Google Scholar 

  • Tiralongo J, Ashikov A, Routier F, Eckhardt M, Bakker H, Gerardy-Schahn R, von Itzstein M (2006) Functional expression of the CMP-sialic acid transporter in Escherichia coli and its identification as a simple mobile carrier. Glycobiology 16:73–81

    Article  CAS  PubMed  Google Scholar 

  • Tonetti M, Sturla L, Bisso A, Zanardi D, Benatti U, De Flora A (1998) The metabolism of 6-deoxyhexoses in bacterial and animal cells. Biochimie 80:923–931

    Article  CAS  PubMed  Google Scholar 

  • Vallon T, Ghanegaonkar S, Vielhauer O, Müller A, Albermann C, Sprenger G, Reuss M, Lemuth K (2008) Quantitative analysis of isoprenoid diphosphate intermediates in recombinant and wild-type Escherichia coli strains. Appl Microbiol Biotechnol 81:175–182

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Eichenseer C, Viell P, Piendl W, Altenbuchner J (1996) Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol 21:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Xu YX, Liu L, Caffaro CE, Hirschberg CB (2010) Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis. J Biol Chem 285:24600–24608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Stephan Nußberger (Universtät Stuttgart) for his support with the electron microscope and to Josef Altenbuchner (Universtät Stuttgart) for providing us with plasmid pJOE2702. The authors acknowledge the financial support by a grant from the German Bundesministerium für Bildung und Forschung (BioChance Plus 0315170) to Jennewein Biotechnologie GmbH, Rheinbreitbach, Germany. We also thank Jennewein Biotechnologie GmbH for the supply of strains and plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Albermann.

Ethics declarations

Conflict of interest

Parts of the presented results have been filed as a patent application.

Supporting information

Supplementary Table 1—Strains and plasmids used in this study.

Supplementary Fig. 1—DNA and sequence of the codon optimized fucT1 gene.

Supplementary Fig. 2—Kinetic data of the GDP-l-fucose transport by FucT1.

Additional information

Karin Förster-Fromme and Sarah Schneider have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förster-Fromme, K., Schneider, S., Sprenger, G.A. et al. Functional expression of a human GDP-l-fucose transporter in Escherichia coli . Biotechnol Lett 39, 219–226 (2017). https://doi.org/10.1007/s10529-016-2233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2233-x

Keywords

Navigation