Skip to main content
Log in

An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli.

Results

Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain.

Conclusions

Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–698

    Article  CAS  PubMed  Google Scholar 

  • Boynton ZL, Bennett GN, Rudolth FB (1994) Intracellular concentrations of coenzyme A and its derivatives from Clostridium acetobutylicum ATCC 824 and their roles in enzyme regulation. Appl Environ Microbiol 60:39–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castaño-Cerezo S, Bernal V et al (2014) Regulation of acetate metabolism in Escherichia coli BL21 by protein Nε-lysine acetylation. Appl Microbiol Biotechnol 99:3533–3545

    Article  PubMed  Google Scholar 

  • Chohnan S, Takamura Y (1991) A simple micromethod for measurement of CoASH and its use in measuring intracellular levels of CoASH and short chain Acyl-CoAs in Escherichia coli K12 cells. Agric Biol Chem 55:87–94

    CAS  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 40:484–524

    Google Scholar 

  • Lin ZQ, Xu ZB, Li YF et al (2014) Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 13:1–12

    Article  Google Scholar 

  • May A, Fischer RJ, Thum SM et al (2012) A modified pathway for the production of acetone in Escherichia coli. Metab Eng 15:218–225

    Article  PubMed  Google Scholar 

  • McCleary WR, Stock JB, Ninfa AJ (1993) Is acetyl phosphate a global signal in Escherichia coli. J Bacteriol 175:2793–2798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noguch S, Putri SP, Lan EI et al (2016) Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. Metabolomics 12:1–10

    Article  Google Scholar 

  • Orth JD, Conrad TM, Na J et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:1–9

    Google Scholar 

  • Schellenberger J, Que R, Fleming RM et al (2011) Quantitative prediction of cellular metabolism with constraint based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi AQ, Zhu XN, Lu J, Zhang XL et al (2012) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10

    Article  PubMed  Google Scholar 

  • Soma Y, Inokuma K, Tanaka T et al (2012) Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 114:80–85

    Article  CAS  PubMed  Google Scholar 

  • Vadali RV, Bennett GN, San KY (2004) Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab Eng 6:133–139

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Spies M, Reinscheid DJ et al (1997) Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168:262–269

    Article  CAS  PubMed  Google Scholar 

  • Zhu NQ, Xia HH, Wang ZW et al (2013) Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS ONE 8:1–8

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (973 Program) (Nos. 2012CB725203, 2015CB755704) and the Key Project in the Tianjin Science & Technology Pillar Program (No. 14ZCZDSY00060).

Supporting Information

Supplementary Table 1—Strains and plasmids used in this study.

Supplementary Table 2—Primer sequence used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwu Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yuan, Q., Zheng, Y. et al. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli . Biotechnol Lett 38, 1359–1365 (2016). https://doi.org/10.1007/s10529-016-2115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2115-2

Keywords

Navigation