Skip to main content
Log in

Exogenous transglutaminase improves multiple-stress tolerance in Lactococcus lactis and other lactic acid bacteria with glutamine and lysine in the cell wall

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To increase the resistance of ingested bacteria to multiple environmental stresses, the role of transglutaminase in Lactococcus lactis and possible mechanisms of action were explored.

Results

L. lactis grown with transglutaminase exhibited significantly higher resistance to bile salts, stimulated gastric juice, antibiotics, NaCl, and cold stress compared to the control (cultured without transglutaminase), with no negative influence on cell growth. Transmission electron microscopy revealed that the cell walls of L. lactis cultured with 9 U transglutaminase/ml were approx. 1.9-times thicker than the control. Further analysis demonstrated that the multi-resistant phenotype was strain-specific; that is, it occurred in bacteria with the presence of glutamine and lysine in the peptidoglycan.

Conclusion

Supplementation of culture media with transglutaminase is an effective, simple, and inexpensive strategy to protect specific ingested bacteria against multiple environmental challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bahey-El-Din M, Gahan CGM, Griffin BT (2010) Lactococcus lactis as a cell factory for delivery of therapeutic proteins. Curr Gene Ther 10:34–45

    Article  CAS  PubMed  Google Scholar 

  • Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    Article  CAS  PubMed  Google Scholar 

  • Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W (2012) Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 421:657–666

    Article  CAS  PubMed  Google Scholar 

  • Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104:467–483

    Article  CAS  Google Scholar 

  • Corcoles-Saez I, Ballester-Tomas L, de la Torre-Ruiz M, Prieto JA, Randez-Gil F (2012) Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae. Biochem J 446:477–488

    Article  CAS  PubMed  Google Scholar 

  • Courtin P, Miranda G, Guillot A, Wessner F, Mézange C, Domakova E, Kulakauskas S, Chapot-Chartier MP (2006) Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an l, d-Carboxypeptidase involved in peptidoglycan maturation. J Bacteriol 188:5293–5298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fortin MH, Champagne CP, St-Gelais D, Britten M, Fustier P, Lacroix M (2011) Effect of time of inoculation, starter addition, oxygen level and salting on the viability of probiotic cultures during Cheddar cheese production. Int Dairy J 21:75–82

    Article  CAS  Google Scholar 

  • Fu RY, Chen J, Li Y (2005) Heterologous leaky production of transglutaminase in Lactococcus lactis significantly enhances the growth performance of the host. Appl Environ Microbiol 71:8911–8919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaspar ALC, de Goes-Favoni SP (2015) Action of microbial transglutaminase (MTGase) in the modification of food proteins: a review. Food Chem 171:315–322

    Article  CAS  PubMed  Google Scholar 

  • Heidebach T, Först P, Kulozik U (2009a) Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll 23:1670–1677

    Article  CAS  Google Scholar 

  • Heidebach T, Först P, Kulozik U (2009b) Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int Dairy J 19:77–84

    Article  CAS  Google Scholar 

  • Kawai M, Yamada S, Ishidoshiro A, Oyamada Y, Ito H, Yamagishi J (2009) Cell-wall thickness: possible mechanism of acriflavine resistance in meticillin-resistant Staphylococcus aureus. J Med Microbiol 58:331–336

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Chang J, Singh M (2015) Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta 1848:350–362

    Article  CAS  PubMed  Google Scholar 

  • Kuhn KS, Stehle P, Furst P (1996) Quantitative analysis of glutamine in peptides and proteins. J Agric Food Chem 4:1808–1811

    Article  Google Scholar 

  • Mills S, Stanton C, Fitzgerald GF, Ross RP (2011) Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb Cell Fact 10(Suppl 1):S19

    Article  PubMed Central  PubMed  Google Scholar 

  • Pontes DS, de Azevedo MSP, Chatel JM, Langella P, Azevedo V, Miyosh A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Prot Exp Purif 79:165–175

    Article  CAS  Google Scholar 

  • Stack HM, Kearney N, Stanton C, Fitzgerald GF, Ross RP (2010) Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli. Appl Environ Microbiol 76:500–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Z, Pan DD, Guo YX, Zeng XQ (2013) Structure and anti-inflammatory capacity of peptidoglycan from Lactobacillus acidophilus in RAW-264.7 cells. Carbohyd Polym 96:466–473

    Article  CAS  Google Scholar 

  • Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70:6738–6747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou Q, Liu X, Zhao J, Tian F, Zhang HP, Zhang H, Chen W (2012) Microencapsulation of Bifidobacterium bifidum F-35 in whey protein-based microcapsules by transglutaminase-induced gelation. J Food Sci 77:M270–M274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (Contract No. 31200034) and the Foundation of Human Resourance of Anhui Agricultural University. We thank Dr Jeroen Hugenholtz for providing strain NZ9000 and plasmid pNZ8148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyan Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Kan, Z., You, Y. et al. Exogenous transglutaminase improves multiple-stress tolerance in Lactococcus lactis and other lactic acid bacteria with glutamine and lysine in the cell wall. Biotechnol Lett 37, 2467–2474 (2015). https://doi.org/10.1007/s10529-015-1942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1942-x

Keywords

Navigation