Skip to main content
Log in

Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria are widely used in fermented foods, especially cheese products. In this study, we observed the salt tolerance of Lactobacillus plantarum ATCC 14917 after exposure to different concentrations of NaCl in MRS medium. Quantitative proteomic profiles using two-dimensional electrophoresis identified 384 proteins, of which 26 were upregulated and 31 downregulated. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry was then used to identify 11 proteins, of which three were linked to carbohydrate metabolism. The downregulation of carbamoyl phosphate synthase in carbohydrate metabolism revealed a bacterial regulation mechanism to save energy in order to survive during the salt tolerance. Other proteins were found involved in transcription–translation processes, fatty acid biosynthesis, and the primary metabolic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482. doi:10.1074/jbc.273.19.11478

    Article  CAS  PubMed  Google Scholar 

  2. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122. doi:10.1002/pmic.200300497

    Article  PubMed  Google Scholar 

  3. Duche O, Tre moulet F, Glaser P, Labadie J (2002) Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 68:1491–1498. doi:10.1128/AEM.68.4.1491-1498.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giard JC, Laplace JM, Rince A, Pichereau V, Benachour A, Leboeuf C, Flahaut S (2001) Auffray Y (2001) The stress proteome of Enterococcus faecalis. Electrophoresis 22(14):2947–2954. doi:10.1002/1522-2683(200108)22:14

    Article  CAS  PubMed  Google Scholar 

  5. Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–386. doi:10.1263/jbb.106.381

    Article  CAS  PubMed  Google Scholar 

  6. Leverrier P, Vissers JP, Rouault A, Boyaval P, Jan G (2004) Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch Microbiol 181:215–230. doi:10.1007/s00203-003-0646-0

    Article  CAS  PubMed  Google Scholar 

  7. Lin L, Li T, Dai S, Yu JL, Chen XQ, Wang LY, Wang YG, Hua YJ, Tian B (2016) Autoinducer-2 signaling is involved in regulation of stress-related genes of Deinococcus radiodurans. Arch Microbiol 198:43–51. doi:10.1007/s00203-015-1163-7

    Article  CAS  PubMed  Google Scholar 

  8. Molin G (2001) Probiotics in foods not containing milk or milk constituents with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr 73:380–385

    Google Scholar 

  9. Pano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86. doi:10.1080/10408410600709800

    Article  Google Scholar 

  10. Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925. doi:10.1128/AEM.69.2.917-925.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodgers S (2008) Novel applications of live bacteria in food services: probiotics and protective cultures. Trends Food Sci Tech 19(4):188–197. doi:10.1016/j.tifs.2007.11.007

    Article  CAS  Google Scholar 

  12. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gel. Anal Chem 68:850–858. doi:10.1021/ac950914h

    Article  CAS  PubMed  Google Scholar 

  13. Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86. doi:10.1080/10408410600709800

    Article  CAS  PubMed  Google Scholar 

  14. Stark H, Rodnina MV, Wieden HJ, Zemlin F, Wintermeyer W, van Heel M (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat Struct Biol 9:849–854. doi:10.1038/nsb859

    CAS  PubMed  Google Scholar 

  15. Sturme MH, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T, Vaughan EE, Kleerebezem M, de Vos WM (2005) An agr-like two component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235. doi:10.1128/JB.187.15.5224-5235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sumeri I, Arike L, Stekolštšikova J, Uusna R, Adamberg S, Adamberg K, Paalme T (2010) Effect of stress pretreatment on survival of probiotic bacteria in gastrointestinal tract simulator. Appl Microbiol Biotechnol 86:1925–1931. doi:10.1007/s00253-009-2429-2

    Article  CAS  PubMed  Google Scholar 

  17. Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Anton Van Leeuw 82:187–216. doi:10.1023/A:1020631532202

    Article  Google Scholar 

  18. Voigt DD, Chevalier F, Donaghy JA, Patterson MF, Qian MC, Kelly AL (2012) Effect of high-pressure treatment of milk for cheese manufacture on proteolysis, lipolysis, texture and functionality of Cheddar cheese during ripening. Innov Food Sci Emerg 13:23–30. doi:10.1016/j.ifset.2011.10.004

    Article  CAS  Google Scholar 

  19. Zago M, Zago M, Fornasari ME, Fornasari ME, Carminati D, Burns P, Burns P, Viviana Suàrez V, Vinderola G, Gabriel V, Gabriel V, Jorge R, Jorge R, Giorgio G (2011) Characterization and probiotic potential of Lactobacillus plantarumstrains isolated from cheeses. Food Microbiol 28(5):1033–1040. doi:10.1016/j.fm.2011.02.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Funding of China (31471598 and 41276121) and of Jiangsu Province (BK20141447), the Natural Science Funding of Zhejiang (LQ16C200002), the Modern Agricultural Technical System Foundation of China (CARS-43-17), the Science and Technology Department of Ningbo (2016C10022), and the K. C. Wong Magna Fund at Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daodong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wu, Z., Wu, J. et al. Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917. Curr Microbiol 73, 491–497 (2016). https://doi.org/10.1007/s00284-016-1087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1087-8

Keywords

Navigation