Skip to main content
Log in

Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

A chaperonin, PsyGroELS, from the Antarctic psychrophilic bacterium Psychrobacter sp. PAMC21119, was examined for its role in cold adaptation when expressed in a mesophilic Escherichia coli strain.

Results

Growth of E. coli harboring PsyGroELS at 10 °C was increased compared to the control strain. A co-expression system using PsyGroELS was developed to increase productivity of the psychrophilic enzyme PsyEst9. PsyEst9 was cloned and expressed using three E. coli variants that co-expressed GroELS from PAMC21119, E. coli, or Oleispira antarctica RB8T. Co-expression with PsyGroELS was more effective for the production of PsyEst9 compared tothe other chaperonins.

Conclusion

PsyGroELS confers cold tolerance to E. coli, and shows potential as an effective co-expression system for the stable production of psychrophilic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clare DK, Vasishtan S, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR (2012) ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 149:113–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahiya V, Chaudhuri TK (2014) Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates. J Biol Chem 289:286–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed Central  PubMed  Google Scholar 

  • Feller G, Thiry M, Gerday C (1990) Sequence of a lipase gene from the antarctic psychrotroph Moraxella TA144. Nucleic Acids Res 18:6431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotech 21:1266–1267

    Article  CAS  Google Scholar 

  • Georgescauld F, Popova K, Gupta AJ, Bracher A, Engen JR, Hayer-Hartl M, Hartl FU (2014) GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157:922–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M, Bourlioux P, Karjalainen T (2001) GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147:87–96

    Article  CAS  PubMed  Google Scholar 

  • Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, Kang SG (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SJ, Shin SC, Hong SG, Lee YM, Choi IG, Park H (2012) Genome sequence of a novel member of the genus Psychrobacter isolated from Antarctic soil. J Bacteriol 194:2403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koike-Takeshita A, Arakawa T, Taguchi H, Shimamura T (2014) Crystal structure of a symmetric football-shaped GroEL:GroES-ATP complex determined at 3.8A reveals rearrangement between two GroEL rings. J Mol Biol 426:3634–3641

    Article  CAS  PubMed  Google Scholar 

  • Kolaj O, Spada S, Robin S, Wall JG (2009) Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 8:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Kupper M, Gupta SK, Feldhaar H, Gross R (2014) Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol Lett 353:1–10

    Article  CAS  PubMed  Google Scholar 

  • Machida K, Kono-Okada A, Hongo K, Mizobata T, Kawata Y (2008) Hydrophilic residues 526 KNDAAD 531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity. J Biol Chem 283:6886–6896

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Tanaka M, Maruyama A, Higashi Y, Kurusu Y (2004) A nonconserved carboxy-terminal segment of GroEL contributes to reaction temperature. Biosci Biotechnol Biochem 68:2498–2504

    Article  CAS  PubMed  Google Scholar 

  • Tyagi NK, Fenton WA, Horwich AL (2009) GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Proc Natl Acad Sci USA 106:20264–20269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warnecke T, Hurst LD (2010) GroEL dependency affects codon usage–support for a critical role of misfolding in gene evolution. Mol Syst Biol 6:340

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber JK, Pande VS (2013) Functional understanding of solvent structure in GroEL cavity through dipole field analysis. J Chem Phys 138:165101

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Hu S, Guan YX, Yao SJ (2012) Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli. Appl Microbiol Biotechnol 93:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Yoshimune K, Ninomiya Y, Wakayama M, Moriguchi M (2004) Molecular chaperones facilitate the soluble expression of N-acyl-d-amino acid amidohydrolases in Escherichia coli. J Ind Microbiol Biotechnol 31:421–426

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chen S, Liao Y, Wang D, Ding J, Wang Y, Ran X, Lu D, Zhu H (2013) Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa. Protein Expr Purif 92:208–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Development of Cold-adapted Chaperonin GroEL/ES (PE13110), and the Antarctic Organisms: Cold-Adaptation Mechanisms (PE15070) funded from the Korea Polar Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HW., Wi, A.R., Jeon, B.W. et al. Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression. Biotechnol Lett 37, 1887–1893 (2015). https://doi.org/10.1007/s10529-015-1860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1860-y

Keywords

Navigation