Skip to main content
Log in

Molecular chaperones facilitate the soluble expression of N-acyl-d-amino acid amidohydrolases in Escherichia coli

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The overproduction of d-aminoacylase (d-ANase, 233.8 U/mg), N-acyl-d-glutamate amidohydrolase (d-AGase, 38.1 U/mg) or N-acyl-d-aspartate amidohydrolase (d-AAase, 6.2 U/mg) in Escherichia coli is accompanied by aggregation of the overproduced protein. To facilitate the expression of active enzymes, the molecular chaperones GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), trigger factor (TF), GroELS and DnaKJE or GroELS and TF were coexpressed with the enzymes. d-ANase (313.3 U/mg) and d-AGase (95.8 U/mg) were overproduced in an active form at levels 1.3- and 1.8-fold higher, respectively, upon co-expression of GroELS and TF. An E. coli strain expressing the d-AAase gene simultaneously with the TF gene exhibited a 4.3-fold enhancement in d-AAase activity (32.0 U/mg) compared with control E. coli expressing the d-AAase gene alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen L, Sigler PB (1999) The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate specificity. Cell 99:757–768

    Article  CAS  PubMed  Google Scholar 

  2. Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    CAS  PubMed  Google Scholar 

  3. Fourie AM, Sambrook JF, Gething MH (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269:30470–30478

    CAS  PubMed  Google Scholar 

  4. Gragerov A, Zeng L, Zhao X, Burkholder W, Gottesman ME (1994) Specificity of DnaK-peptide binding. J Mol Biol 235:848–854

    Article  CAS  PubMed  Google Scholar 

  5. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  PubMed  Google Scholar 

  6. Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981

    Article  CAS  PubMed  Google Scholar 

  7. Kandror O, Sherman M, Rhode M, Goldberg AL (1995) Trigger factor is involved in GroEL-dependent protein degradation in Escherichia coli and promotes binding of GroEL to unfolded proteins. EMBO J 14:6021–6027

    CAS  PubMed  Google Scholar 

  8. Klein J, Dhurjati P (1995) Protein aggregation kinetics in an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene. Appl Environ Microbiol 61:1220–1225

    CAS  PubMed  Google Scholar 

  9. Knoblauch NTM, Rudiger S, Schonfeld HJ, Driessen JM, Schneider-Mergener J, Bukau B (1999) Substrate specificity of the SecB chaperone. J Biol Chem 274:34219–34225

    Article  CAS  PubMed  Google Scholar 

  10. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  PubMed  Google Scholar 

  11. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492

    CAS  PubMed  Google Scholar 

  12. Lee DH, Kim MD, Lee WH, Kweon DH, Seo JH (2004) Consortium of fold-catalyzing proteins increases soluble expression of cyclohexanone monooxygenase in recombinant Escherichia coli. Appl Microbiol Biotechnol 63:549–552

    Google Scholar 

  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  14. Mizobata T, Kagawa M, Murakoshi N, Kusaka E, Kameo K, Kawata Y, Nagai J (2000) Overproduction of Thermus sp. YS8-13 manganese catalase in Escherichia coli. Eur J Biochem 267:4264–4271

    CAS  PubMed  Google Scholar 

  15. Moriguchi M, Sakai K, Katsuno Y, Maki T, Wakayama M (1993) Purification and characterization of novel N-acyl-d-aspartate amidohydrolase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. Biosci Biotechnol Biochem 57:1145–1148

    CAS  PubMed  Google Scholar 

  16. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699

    CAS  PubMed  Google Scholar 

  17. Nishihara K, Kanemori M, Yanagi H, Yura T (1999) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  Google Scholar 

  18. Panda AK, Khan RH, Rao KBCA, Totey SM (1999) Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol 75:161–172

    Article  CAS  PubMed  Google Scholar 

  19. Patzelt H, Rudiger S, Brehmer D, Kramer G, Vorderwulbecke S, Schaffitzel E, Waitz A, Hesterkamp T, Dong L, Schneider-Mergener J, Bukau B, Deuerling E (2001) Binding specificity of Escherichia coli trigger factor. Proc Natl Acad Sci USA 98:14244–14249

    Article  CAS  PubMed  Google Scholar 

  20. Sakai K, Imamura K, Sonoda Y, Kido H, Moriguchi M (1991) Purification and characterization of N-acyl-d-glutamate deacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. FEBS Lett 289:44–46

    Article  CAS  PubMed  Google Scholar 

  21. Sareen D, Sharma R, Vohra RM (2001) Chaperone-assisted overexpression of an active d-carbamoylase from Agrobacterium tumefaciens AM10. Protein Expr Purif 23:374–379

    Article  CAS  PubMed  Google Scholar 

  22. Schlieker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol 96:13–21

    Article  CAS  PubMed  Google Scholar 

  23. Sell SM, Eisen C, Ang D, Zylicz M, Georgopoulos C (1990) Isolation and characterization of dnaJ null mutants of Escherichia coli. J Bacteriol 172:4827–4835

    CAS  PubMed  Google Scholar 

  24. Stoller G, Rucknagel KP, Nierhaus KH, Schmid FX, Fischer G, Rahfeld JU (1995) A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J 14:4939–4948

    CAS  PubMed  Google Scholar 

  25. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  CAS  PubMed  Google Scholar 

  26. Wakayama M, Moriguchi M (2001) Comparative biochemistry of bacterial N-acyl-d-amino acid amidohydrolase. J Mol Catal B 12:15–25

    Article  CAS  Google Scholar 

  27. Wakayama M, Ashika T, Miyamoto Y, Yoshikawa T, Sonoda Y, Sakai K, Moriguchi M (1995) Primary structure of N-acyl-d-glutamate amidohydrolase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. J Biochem 118:204–209

    PubMed  Google Scholar 

  28. Wakayama M, Katsuno Y, Hayashi S, Miyamoto Y, Sakai K, Moriguchi M (1995) Cloning and sequencing of a gene encoding d-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 and expression of the gene in Escherichia coli. Biosci Biotechnol Biochem 59:2115–2119

    CAS  PubMed  Google Scholar 

  29. Wakayama M, Watanabe E, Takenaka Y, Miyamoto Y, Tau Y, Sakai K, Moriguchi M (1995) Cloning, expression, and nucleotide sequence of the N-acyl-d-aspartate amidohydrolase gene from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. J Ferment Bioeng 80:311–317

    Article  CAS  Google Scholar 

  30. Wakayama M, Hayashi S, Yatsuda Y, Katsuno Y, Sakai K, Moriguchi M (1996) Overproduction of d-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 in Escherichia coli and its purification. Protein Expr Purif 7:395–399

    Article  CAS  PubMed  Google Scholar 

  31. Wakayama M, Yoshimune K, Hirose Y, Moriguchi M (2003) The d-amino acid production by N-acyl-d-amino acid amidohydrolase and their structure and function. J Mol Catal B 23:71–85

    Article  CAS  Google Scholar 

  32. Yochem J, Uchida H, Sunshine M, Saito H, Georgopoulos CP, Feiss M (1978) Genetic analysis of two genes, dnaJ and dnaK, necessary for Escherichia coli and bacteriophage lambda DNA replication. Mol Gen Genet 164:9–14

    CAS  PubMed  Google Scholar 

  33. Yoshimune K, Yoshimura T, Esaki N (1998) Hsc62, a new DnaK homologue of Escherichia coli. Biochem Biophys Res Commun 250:115–118

    Article  CAS  PubMed  Google Scholar 

  34. Yoshimune K, Yoshimura T, Nakayama T, Nishino T, Esaki N (2002) Hsc62, Hsc56, and GrpE, the third Hsp70 chaperone system of Escherichia coli. Biochem Biophys Res Commun 293:1389–1395

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuaki Moriguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimune, K., Ninomiya, Y., Wakayama, M. et al. Molecular chaperones facilitate the soluble expression of N-acyl-d-amino acid amidohydrolases in Escherichia coli. J IND MICROBIOL BIOTECHNOL 31, 421–426 (2004). https://doi.org/10.1007/s10295-004-0163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0163-4

Keywords

Navigation