Skip to main content
Log in

De novo assembly and characterization of the skeletal muscle transcriptome of sheep using Illumina paired-end sequencing

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

In order to enrich the ovine genome and provide a basis for future molecular genetics and functional genomics analyses in sheep, we used de novo assembly to establish transcriptomes of skeletal muscle tissues of Dorper and Small-tailed Han sheep.

Results

A total of 103,058,824 clean Illumina paired-end sequencing reads from the two libraries were assembled into 145,524 unigenes in a de novo project. There were 5718 unigenes showing differential expression between the two transcriptomes, and 7437 coding SSRs were exploited. After further assembly, we identified a total of 70,348 all-unigenes with an average length of 863 bp; 35,201 of these all-unigenes could be annotated in the Nr database, and 12,219 were found in the clusters of orthologous groups database. Gene ontology searches indicated cell and binding as the main terms. Among 258 Kyoto Encyclopedia of Genes and Genomes database pathways, protein and amino acid metabolism pathways were the most commonly identified.

Conclusion

We analyzed the ovine muscle transcriptome using high-throughput sequencing technology. Many unigenes were assembled and numerous molecular markers and differential expressed unigenes were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1977) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  Google Scholar 

  • Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, Mouisel E, Hourdé C, Macharia R, Friedrichs M, Relaix F, Zammit PS, Matsakas A, Patel K, Partridge T (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci USA 106:7479–7484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B (2011) Transcriptome characterization and high-throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins LJ, Biggs PJ, Voelckel C, Joly S (2008) An approach to transcriptome analysis of non-model organisms using short-read sequences. Genome Inf 21:3–14

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham NS, May ST, Daniel ZC, Emmerson ZF, Brameld JM, Parr T (2011) Use of the Affymetrix Human GeneChip array and genomic DNA hybridisation probe selection to study ovine transcriptomes. Animal 5:861–866

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 11:384

    Article  PubMed Central  PubMed  Google Scholar 

  • Jäger M, Ott CE, Grünhagen J, Hecht J, Schell H, Mundlos S, Duda GN, Robinson PN, Lienau J (2011) Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics 12:158

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acid Res 36:480–484

    Article  Google Scholar 

  • Kortt AA, Caldwell JB, Lilley GG, Higgins TJ (1991) Amino acid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L). Eur J Biochem 195:329–334

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miao X, Luo Q (2013) Genome-wide transcriptome analysis between small-tail Han sheep and the Surabaya fur sheep using high-throughput RNA sequencing. Reproduction 145:587–596

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nie Q, Fang M, Jia X, Zhang W, Zhou X, He X, Zhang X (2011) Analysis of muscle and ovary transcriptome of Sus scrofa: assembly, annotation and marker discovery. DNA Res 18:343–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren H, Li L, Su H, Xu L, Wei C, Zhang L, Li H, Liu W, Du L (2011) Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics 12:411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  CAS  PubMed  Google Scholar 

  • Vidotto M, Grapputo A, Boscari E, Barbisan F, Coppe A, Grandi G, Kumar A, Congiu L (2013) Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genomics 14:407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS (2010a) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 1:400

    Article  Google Scholar 

  • Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010b) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11:726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilhelm BT, Landry JR (2009) RNA-Seq quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    Article  CAS  PubMed  Google Scholar 

  • Xu DL, Long H, Liang JJ, Zhang J, Chen X, Li JL, Pan ZF, Deng GB, Yu MQ (2012) De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics 13:133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu T, Guo X, Wang H, Du X, Gao X, Liu D (2013) De novo transcriptome assembly and differential gene expression profiling of three capra hircus skin types during anagen of the hair growth cycle. Int J Genomics 2013:269191

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L). BMC Genomics 13:90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Wang G, Wang J, Ji Z, Liu Z, Pi X, Chen C (2013) Characterization and comparative analyses of muscle transcriptomes in Dorper and small-tailed Han sheep using RNA-Seq technique. PLoS One 8:e72686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Wang G, Wang J, Ji Z, Dong F, Chao T (2014) Analysis of differential gene expression and novel transcript units of ovine muscle transcriptomes. PLoS One 9:e89817

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds of Innovation Research of Agriculture and Biology Resources (No. 2011186125), the Shandong Provincial Modern Agriculture Industry Technology System Sheep Industry Innovation Team (No. SDAIT-09-011-01) and Weifang science and technology development Projects (No. 201301009) and Doctoral scientific research fund project of Weifang university (No. 2015BS04).

Supporting information

The supplementary data are available at https://mega.co.nz/#fm/KgBCQJba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, G., Hou, L. et al. De novo assembly and characterization of the skeletal muscle transcriptome of sheep using Illumina paired-end sequencing. Biotechnol Lett 37, 1747–1756 (2015). https://doi.org/10.1007/s10529-015-1854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1854-9

Keywords

Navigation