Skip to main content

Advertisement

Log in

Impact of heparin-binding domain of recombinant human osteocalcin-fibronectinIII9-14 on the osteoblastic cell response

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Fibronectin (FN) containing a heparin-binding domain (HBD) and an Arg-Gly-Asp (RGD) domain can promote cell adhesion and proliferation compared to FN that contained only RGD. Here, we have engineered recombinant human osteocalcin (rhOC) with FN type III9-14 (rhOC-FNIII9-14) containing RGD and HBD to promote the cellular activity of MC3T3-E1 cells, including adhesion, proliferation, and differentiation. RhOC-FNIII9-14 significantly increased cell adhesion and proliferation of MC3T3-E1 cells compared to rhOC-FNIII9-10 (P < 0.05). Moreover, rhOC-FNIII9-14 showed osteogenic differentiation of MC3T3-E1 cells in mineralization activity and osteogenic gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW, Naus CC (2011) Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bone Miner Res 26:2911–2922

    Article  PubMed  CAS  Google Scholar 

  • Bossard C, Van den Berghe L, Laurell H, Castano C, Cerutti M, Prats AC, Prats H (2004) Antiangiogenic properties of fibstatin, an extracellular FGF-2-binding polypeptide. Cancer Res 64:7507–7512

    Article  PubMed  CAS  Google Scholar 

  • De Laporte L, Rice JJ, Tortelli F, Hubbell JA (2010) Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain. PLoS ONE 8:e62076

    Article  Google Scholar 

  • Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838

    Article  PubMed  CAS  Google Scholar 

  • Grant RP, Spitzfaden E, Altroff H, Campbell ID, Mardon HJ (1997) Structural requirements for biological activity of the ninth and tenth FIII domains of human fibronectin. J Biol Chem 272:6159–6166

    Article  PubMed  CAS  Google Scholar 

  • Gundberg CM, Clough ME (1992) The osteocalcin propeptide is not secreted in vivo or in vitro. J Bone Miner Res 7:73–80

    Article  PubMed  CAS  Google Scholar 

  • Houben R, Soute BA, Knapen MH, Vermeer C (1997) Strategies for developing human osteocalcin standards: a critical evaluation. Scand J Clin Lab Invest Suppl 227:100–104

    PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  • Ingham KC, Brew SA, Atha DH (1990) Interaction of heparin with fibronectin and isolated fibronectin domains. Biochem J 272:605–611

    PubMed  CAS  Google Scholar 

  • Kang W, Park S, Jang JH (2008) Kinetic and functional analysis of the heparin-binding domain of fibronectin. Biotechnol Lett 30:55–59

    Article  PubMed  CAS  Google Scholar 

  • Kang W, Kim TI, Yun Y, Kim HW, Jang JH (2011) Engineering of a multi-functional extracellular matrix protein for immobilization to bone mineral hydroxyapatite. Biotechnol Lett 33:199–204

    Article  PubMed  CAS  Google Scholar 

  • Kim TI, Jang JH, Chung CP, Ku Y (2003) Fibronectin fragment promotes osteoblast associated gene expression and biological activity of human osteoblast-like cell. Biotechnol Lett 25:2007–2011

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Park SO, Jang HJ, Jang JH (2006) Importance of the heparin-binding domain of fibronectin for enhancing cell adhesion activity of the recombinant fibronectin. Biotechnol Lett 28:1409–14013

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Park S, Kim HW, Jang JH (2007) Recombinant expression of mouse osteocalcin protein in Escherichia coli. Biotechnol Lett 29:1631–1635

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Kang W, Jeon E, Jang JH (2010) Construction and expression of a recombinant fibronectinIII10 protein for integrin-mediated cell adhesion. Biotechnol Lett 32:29–33

    Article  PubMed  CAS  Google Scholar 

  • Kim TI, Han JE, Jung HM, Oh JH, Woo KM (2013) Analysis of histone deacetylase inhibitor-induced responses in human periodontal ligament fibroblasts. Biotechnol Lett 35:129–133

    Article  PubMed  Google Scholar 

  • Ku Y, Chung CP, Jang JH (2005) The effect of the surface modification of titanium using a recombinant fragment of fibronectin and vitronectin on cell behavior. Biomaterials 26:5153–5157

    Article  PubMed  CAS  Google Scholar 

  • LeBaron RG, Athanasiou KA (2000) Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng 6:85–103

    Article  PubMed  CAS  Google Scholar 

  • Lee AJ, Hodges S, Eastell R (2000) Measurement of osteocalcin. Ann Clin Biochem 37:432–446

    Article  PubMed  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  CAS  Google Scholar 

  • Linsley C, Wu B, Tawil B (2013) The effect of fibrinogen, collagen type I, and fibronectin on mesenchymal stem cell growth and differentiation into osteoblasts. Tissue Eng Part A. doi:10.1089/ten.tea.2012.0523

    PubMed  Google Scholar 

  • Martino MM, Hubbell JA (2010) The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J 24:4711–4721

    Article  PubMed  CAS  Google Scholar 

  • Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, Müller R, Livne E, Eming SA, Hubbell JA (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3:100ra89

    Article  PubMed  Google Scholar 

  • Oldberg A, Linney E, Ruoslahti E (1983) Molecular cloning and nucleotide sequence of a cDNA clone coding for the cell attachment domain in human fibronectin. J Biol Chem 258:10193–10196

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57:375–413

    Article  PubMed  CAS  Google Scholar 

  • Viereck V, Siggelkow H, Tauber S, Raddatz D, Schutze N, Hufner M (2002) Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J Cell Biochem 86:348–356

    Article  PubMed  CAS  Google Scholar 

  • Wijelath ES, Rahman S, Namekata M, Murray J, Nishimura T, Mostafavi-Pour Z, Patel Y, Suda Y, Humphries MJ, Sobel M (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99:853–860

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li L, Zhu J, Kuang H, Dong S, Wang H, Zhang X, Zhou Y (2012) In vitro observations of self-assembled ECM-mimetic bioceramic nanoreservoir delivering rFN/CDH to modulate osteogenesis. Biomaterials 33:7468–7477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Research Centers Program (Grant#: 2009-0093829), the World Class University (WCU) program (Grant#: R31-10069), and the Basic Science Research program through the National Research Foundation (NRF) funded by the Ministry of Education, Science, and Technology (2010-0022628, 2013R1A1A2011375) and a grant from the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI11C0388), and an Inha University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Hyeog Jang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, YR., Kim, HW. & Jang, JH. Impact of heparin-binding domain of recombinant human osteocalcin-fibronectinIII9-14 on the osteoblastic cell response. Biotechnol Lett 35, 2213–2220 (2013). https://doi.org/10.1007/s10529-013-1334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1334-z

Keywords

Navigation