Skip to main content
Log in

Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

High-level constitutive gene expression can result in cellular metabolic imbalance and limit production. To circumvent these problems, a P alsSD -controlled auto-inducible 2-ketoisovalerate biosynthetic pathway and a P spac -controlled IPTG-inducible Ehrlich pathway were constructed in Bacillus subtilis to modulate gene expression. Based on the precise gene expression characteristics of the two inducible pathways, the optimal IPTG induction time point and dose for 2-methyl-1-propanol biosynthesis were determined as 9.5 h and 300 μM, respectively. Under the optimized conditions, strain BSUΔL-03 with inducible pathways produced up to 3.83 ± 0.46 g 2-methyl-1-propanol/l, which was about 60 % higher than BSUL04 with constitutive pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  PubMed  CAS  Google Scholar 

  • Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K-i, Bisaria V, Kondo A (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 94:651–658

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195

    Article  PubMed  CAS  Google Scholar 

  • Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterization of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104:241–252

    Article  PubMed  CAS  Google Scholar 

  • Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for iso-butanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91:577–589

    Article  PubMed  CAS  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electro microbial conversion of CO2 to higher alcohols. Science 335:1596

    Article  PubMed  CAS  Google Scholar 

  • Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9:131–137

    Article  PubMed  CAS  Google Scholar 

  • Renna MC, Najimudin N, Winik LR, Zahler SA (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875

    PubMed  CAS  Google Scholar 

  • Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for iso-butanol production. Appl Microbiol Biotechnol 87:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Tojo S, Satomura T, Morisaki K, Deutscher J, Hirooka K, Fujita Y (2005) Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Mol Microbiol 56:1560–1573

    Article  PubMed  CAS  Google Scholar 

  • van Hijum SAFT, Medema MH, Kuipers OP (2009) Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 73:481–509

    Article  PubMed  Google Scholar 

  • Yadav VG, De Mey M, Giaw Lim C, Kumaran Ajikumar P, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241

    Article  PubMed  CAS  Google Scholar 

  • Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U (2004) Just-in-time transcription program in metabolic pathways. Nat Genet 36:486–491

    Article  PubMed  CAS  Google Scholar 

  • Zhang FZ, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate the kind donation of plasmid pMUTIN4 from Dr. Danier R. Zeigler and the Bacillus Genetic Stock Center (BGSC), The Ohio State University. This research was financially supported by the National 973 Project of China (No. 2007CB714302), the Key Program of National Natural Science Foundation of China (Grant No. 20936002), National Natural Science Foundation of China (No. 20976124), and Specialized Research Fund for the Doctoral Program of Higher Education (20110032130005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Jia, X. & Wen, J. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Biotechnol Lett 34, 2253–2258 (2012). https://doi.org/10.1007/s10529-012-1041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1041-1

Keywords

Navigation