Skip to main content
Log in

A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A system containing a sequential anode–cathode configuration microbial fuel cell and a photobioreactor was developed for continuous treatment of wastewater and electricity generation. Wastewater was treated by the fuel cell to decrease the chemical oxygen demand (COD), phosphorus and nitrogen and to produce electricity. The effluent from the cathode compartment of the cell was continuously fed to an external photobioreactor to remove the remaining P and N using microalgae. Alone, the fuel cell generated a maximum power of 20.3 W/m3 and achieved removal of 85 % COD, 58 % total phosphorus (TP) and 91 % NH4 +–N. When coupled with the photobioreactor, the system removed 92 % TP and 99 % NH4 +–N. These results demonstrate both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technol 101:469–475

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  PubMed  CAS  Google Scholar 

  • Di Termini I, Prassone A, Cattaneo C, Rovatti M (2011) On the nitrogen and phosphorus removal in algal photobioreactors. Ecol Eng 37:976–980

    Article  Google Scholar 

  • Diaz OA, Reddy KR, Moore PA (1994) Solubility of inorganic phosphorus in stream water as influenced by pH and calcium concentration. Water Res 28:1755–1763

    Article  CAS  Google Scholar 

  • Feng YJ, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J Power Sources 195:1841–1844

    Article  CAS  Google Scholar 

  • Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technol 100:717–723

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    Article  PubMed  CAS  Google Scholar 

  • Kim JR, Zuo Y, Regan JM, Logan BE (2008) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  PubMed  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  PubMed  CAS  Google Scholar 

  • Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    Article  PubMed  CAS  Google Scholar 

  • Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43:246–251

    Article  CAS  Google Scholar 

  • Martinez ME, Sanchez S, Jimenez JM, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  CAS  Google Scholar 

  • Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    Article  PubMed  CAS  Google Scholar 

  • Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  PubMed  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  PubMed  CAS  Google Scholar 

  • Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682

    Article  PubMed  CAS  Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2011) Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Sci Technol 63:704–709

    Article  PubMed  CAS  Google Scholar 

  • Qi WQ (2002) Comprehensive index and inorganic pollutants. In: Wei FS (ed) Water and wastewater monitoring and analysis methods, 4th edn. China Environmental Science Press, Beijing, pp 210–285

    Google Scholar 

  • Rodrigo MA, Canizares P, Lobato J, Paz R, Saez C, Linares JJ (2007) Production of electricity from the treatment of urban waste water using a microbial fuel cell. J Power Sources 169:198–204

    Article  CAS  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    Article  PubMed  CAS  Google Scholar 

  • Xie S, Liang P, Chen Y, Xia X, Huang X (2011) Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresour Technol 102:348–354

    Article  PubMed  CAS  Google Scholar 

  • Yang ZM, Guo RB, Xu XH, Fan XL, Luo SJ (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrogen Energ 36:3465–3470

    Article  CAS  Google Scholar 

  • Yu CP, Liang ZH, Das A, Hu ZQ (2011) Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res 45:1157–1164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Scientific and Technological Projects of Shandong Province (Grants No. 2009GG10005004 and No. 2010GHY10504) and the Science and Technology Development Program of Shandong Province (Grant No. 2011GHY11531), China. The research was also supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2009BM015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-bo Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2,496 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Luo, S., Shi, X. et al. A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation. Biotechnol Lett 34, 1269–1274 (2012). https://doi.org/10.1007/s10529-012-0899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0899-2

Keywords

Navigation