Skip to main content
Log in

Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

NAC (for NAM, ATAF1, 2, and CUC2) family genes encode plant-specific transcription factors that play important roles in plant development regulation and in abiotic and biotic stresses. However, the function of NAC genes in grapevines is not clear. A novel NAC transcription factor, designated as VpNAC1, was isolated from Chinese wild Vitis pseudoreticulata. It belongs to the TERN subgroup and is a nuclear-targeting protein and functions as a transcriptional activator. Moreover, VpNAC1 was induced by the fungus Erysiphe necator and the exogenous hormones, particularly salicylic acid, methyl jasmonate and ethylene. Over-expression of VpNAC1 in tobacco plants enhanced their resistance to Erysiphe cichoracearum and Phytophthora parasitica var. nicotianae Tucker. These results suggest that VpNAC1 acts as a positive regulator in biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology 83:1054–1062

    Article  CAS  Google Scholar 

  • Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757

    Article  PubMed  CAS  Google Scholar 

  • Edreva A (2004) A novel strategy for plant protection: induced resistance. J Cell Mol Biol 3:61–69

    Google Scholar 

  • Horsch RB, Fry JE, Eichlotz D, Rogers SG, Frakey RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  PubMed  Google Scholar 

  • Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and arabidopsis. Plant Mol Biol 65:137–150

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Lee S, Yu S, Choi D (2005) Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta 222:876–887

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro GL, Marques CS, Costa MD, Reis PA, Alves MS, Carvalho CM, Fietto LG, Fontes EP (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23

    Article  PubMed  CAS  Google Scholar 

  • Repka V, Fischerova I, Silharova K (2004) Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. Biol Plant 48:273–283

    Article  CAS  Google Scholar 

  • Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in arabidopsis. Plant J 61:661–671

    Article  PubMed  CAS  Google Scholar 

  • Shailasree S, Sarosh BR, Vasanthi NS, Shetty HS (2001) Seed treatment with beta-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Manag Sci 57:721–728

    Article  PubMed  CAS  Google Scholar 

  • Shan W, Marshall JS, Hardham AR (2004) Gene expression in germinated cysts of Phytophthora nicotianae. Mol Plant Pathol 5:317–330

    Article  PubMed  CAS  Google Scholar 

  • Sharathchandra RG, Raj SN, Shetty NP, Amruthesh KN, Shetty HS (2004) A chitosan formulation elexa (TM) induces downy mildew disease resistance and growth promotion in pearl millet. Crop Prot 23:881–888

    Article  CAS  Google Scholar 

  • Souer E, vanHouwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to uncinula necator in Chinese wild vitis species. Vitis 34:159–164

    Google Scholar 

  • Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F (2009) The arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact 22:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J, Haseloff J, Scheres B (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in arabidopsis root stem cells. Dev Cell 15:913–922

    Article  PubMed  CAS  Google Scholar 

  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12:757–768

    Article  PubMed  CAS  Google Scholar 

  • Xu XP, Chen CH, Fan BF, Chen ZX (2006) Physical and functional interactions between pathogen-induced arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang YJ, Wang XP (2003) An improved method for rapidly extracting total RNA from Vitis. J Fruit Sci 20(3):178–181

    CAS  Google Scholar 

  • Zhang H, Jin JP, Tang LA, Zhao Y, Gu XC, Gao G, Luo JC (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30971972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Shi, J., He, M. et al. Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata . Biotechnol Lett 34, 1335–1342 (2012). https://doi.org/10.1007/s10529-012-0890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0890-y

Keywords

Navigation