Skip to main content
Log in

Determination of a catalytic tyrosine in Trametes cervina lignin peroxidase with chemical modification techniques

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Trametes cervina lignin peroxidase (LiP) lacks a catalytic tryptophan strictly conserved in other LiP and versatile peroxidases. It contains tyrosine181 at the potential catalytic site. This protein and the well-characterized Phanerochaete chrysosporium LiP with the catalytic tryptophan171 have been chemically modified: the tryptophan-specific modification with N-bromosuccinimide sufficiently disrupted oxidation of veratryl alcohol by P. chrysosporium LiP, whereas the activity of T. cervina LiP was not affected, suggesting no catalytic tryptophan in T. cervina LiP. On the other hand, the tyrosine-specific modification with tetranitromethane did not affect the activities of P. chrysosporium LiP lacking tyrosine but inactivated T. cervina LiP due to the nitration of tyrosine181. These results strongly suggest that tyrosine181 is at the catalytic site in T. cervina LiP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blodig W, Doyle WA, Smith AT, Winterhalter K, Piontek K (1998) Autocatalytic formation of a hydroxy group at Cβ of Trp171 in lignin peroxidase. Biochemistry 37:8832–8838

    Article  PubMed  CAS  Google Scholar 

  • Blodig W, Smith AT, Winterhalter K, Piontek K (1999) Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch Biochem Biophys 370:86–92

    Article  PubMed  CAS  Google Scholar 

  • Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction site in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:15097–15105

    Article  PubMed  CAS  Google Scholar 

  • Gellerstedt G, Henriksson G (2008) Lignins: Major sources, structure and properties In: Belgacem M, Gandini A (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 201–224

    Google Scholar 

  • Gelpke MDS, Lee J, Gold MH (2002) Lignin peroxidase oxidation of veratryl alcohol; effects of the mutants H82A, Q222A, W171A, and F267L. Biochemistry 41:3409–3506

    Google Scholar 

  • Gold MH, Kuwahara M, Chiu AA, Glenn JK (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234:353–362

    Article  PubMed  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  PubMed  CAS  Google Scholar 

  • Johjima T, Wariishi H, Tanaka H (2002) Veratryl alcohol binding sites of lignin peroxidase from Phanerochaete chrysosporium. J Mol Catal B 17:49–57

    CAS  Google Scholar 

  • Kamitsuji H, Watanabe T, Honda Y, Kuwahara M (2005) Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators. Biochem J 386:387–393

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion-the microbial-degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure–function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Article  Google Scholar 

  • Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A (2009) Enzymatic delignification of plant cell-wall: from nature to mill. Curr Opin Biotechnol 20:348–357

    Article  PubMed  Google Scholar 

  • Miki Y, Tanaka H, Nakamura M, Wariishi H (2006) Isolation and characterization of a novel lignin peroxidase from the white-rot basidiomycete Trametes cervina. J Fac Agr Kyushu Univ 51:99–104

    CAS  Google Scholar 

  • Miki Y, Morales M, Ruiz-Dueñas FJ, Martínez MJ, Wariishi H, Martínez AT (2009) Escherichia coli expression and in vitro activation of a unique ligninolytic peroxidase that has a catalytic tyrosine residue. Protein Expr Purif 68:208–214

    Article  PubMed  CAS  Google Scholar 

  • Miki Y, Ichinose H, Wariishi H (2010) Molecular characterization of lignin peroxidase from the white-rot basidiomycete Trametes cervina: a novel fungal peroxidase. FEMS Microb Lett 304:39–46

    Article  CAS  Google Scholar 

  • Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long range electron transfer pathways. J Mol Biol 354:385–402

    Article  PubMed  Google Scholar 

  • Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem 281:9517–9526

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Article  PubMed  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009a) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Article  PubMed  Google Scholar 

  • Ruiz-Dueñas FJ, Pogni R, Morales M, Giansanti S, Mate MJ, Romero A, Martínez MJ, Basosi R, Martínez AT (2009b) Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H and W164S variants. J Biol Chem 284:7986–7994

    Article  PubMed  Google Scholar 

  • Sasaki S, Nonaka D, Wariishi H, Tsutsumi Y, Kondo R (2008) Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin. Phytochemistry 69:348–355

    Article  PubMed  CAS  Google Scholar 

  • Smith AT, Doyle WA, Dorlet P, Ivancich A (2009) Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase. Proc Natl Acad Sci USA 106:16084–16089

    Article  PubMed  CAS  Google Scholar 

  • Sokolovsky M, Riordan JF, Vallee BL (1967) Tetranitromethane. a regent for the nitration of tyrosyl residues in proteins. Biochemistry 5:3582–3589

    Article  Google Scholar 

  • Stubbe J, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Wariishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, Y., Ichinose, H. & Wariishi, H. Determination of a catalytic tyrosine in Trametes cervina lignin peroxidase with chemical modification techniques. Biotechnol Lett 33, 1423–1427 (2011). https://doi.org/10.1007/s10529-011-0571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0571-2

Keywords

Navigation