Skip to main content
Log in

Entrapment of cytochrome P450 BM-3 in polypyrrole for electrochemically-driven biocatalysis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

In vitro biocatalysis with cytochrome P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry. The monooxygenase was immobilized on electrodes by entrapment in polypyrrole as a conductive polymer for electrochemically wiring the enzyme. Electropolymerization of pyrrole proved to be a useful means of immobilising an active cytochrome P450 BM-3 mutein on platinum and glassy carbon electrodes without denaturation. Repeatedly sweeping the electric potential between −600 and +600 mV versus Ag/AgCl led to enzymatically-catalysed product formation while in the absence of the enzyme no product formed under otherwise identical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguey-Zinsou KF, Bernhardt PV, Voss De JJ, Slessor KE (2003) Electrochemistry of P450cin: new insights into P450 electron transfer. Chem Commun 3:418–419

    Article  Google Scholar 

  • Boddupalli SS, Estabrook RW, Peterson JA (1990) Fatty acid monooxygenation by cytochrome P-450BM-3. J Biol Chem 265(8):4233–4239

    PubMed  CAS  Google Scholar 

  • Cryle MJ, Stok JE, De Voss JJ (2003) Reactions catalyzed by bacterial cytochromes P450. Aust J Chem 56(8):749–762

    Article  CAS  Google Scholar 

  • Diaz AF, Castillo IJ (1980) A polymer electrode with variable conductivity: polypyrrole. J Chem Soc Chem Commun 397–398

  • Falck JR, Reddy YK, Haines DC, Reddy KM, Krishna UM, Graham S, Murry B, Peterson JA (2001) Practical, Enantiospecific Syntheses of 14, 15-EET and Leukotoxin B (Vernolic Acid). Tetrahedron Lett 42:4131–4133

    Article  CAS  Google Scholar 

  • Faulkner KM, Shet MS, Fisher CW, Estabrook RW (1995) Electrocatalytically driven ω-hydroxylation of fatty acids using cytochrome P450 4A1. Proc Natl Acad Sci USA 92:7705–7709

    Article  PubMed  CAS  Google Scholar 

  • Fleming BD, Tian Y, Bell SG, Wong LL, Urlacher V, Hill HAO (2003) Redox properties of cytochrome P450BM3 measured by direct methods. Eur J Biochem 270:4082–4088

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Ohkawa H, Narato M, Shirai M, Asada Y, Karube I, Miyake J (1997) Regeneration of NADPH by cactus chloroplasts: coupling reaction with P450 monooxygenase. J Ferment Bioeng 84(4):324–329

    Article  CAS  Google Scholar 

  • Hollmann F, Hofstetter K, Schmid A (2006) Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol 24(4):163–171

    Article  PubMed  CAS  Google Scholar 

  • Kazlauskaite J, Westlake ACG, Wong LL, Hill HAO (1996) Direct electrochemistry of cytochrome P450cam. Chem Commun 18:2189–2190

    Article  Google Scholar 

  • Kelly SL, Kelly DE, Jackson CJ, Warrilow AGS, Lamb DC (2005) The diversity and importance of microbial cytochromes P450. In: Montellano PRO (ed) Cytochrome P450: structure, mechanism, and biochemistry. Kluwer Academic/Plenum Publishers, New York, pp 585–617

    Google Scholar 

  • Klein ML, Fulco AJ (1993) Critical residues involved in FMN binding and catalytic activity in cytochrome P450BM-3. J Biol Chem 268(10):7553–7561

    PubMed  CAS  Google Scholar 

  • Kubo T, Peters M, Meinhold P, Arnold F (2006) Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450 BM-3. Chemistry 12(4):1216–1220

    Article  PubMed  CAS  Google Scholar 

  • Lentz O, Li Q-S, Schwaneberg U, Lutz-Wahl S, Fischer P, Schmid RD (2001) Modification of the fatty acid specificity of cytochrome P450BM-3 from Bacillus megaterium by directed evolution: a validated assay. J Mol Catal B: Enzym 15(4–6):123–133

    Article  CAS  Google Scholar 

  • Maurer SC, Schulze H, Schmid RD, Urlacher V (2003) Immobilisation of P450 BM-3 and an NADP+ cofactor recycling system: towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Adv Synth Catal 345:802–810

    Article  CAS  Google Scholar 

  • Nakano R, Sato H, Shimizu T (1996) Tris(2,2′-bipyridyl)ruthenium(II)-mediated photoinduced electron transfer of engineered cytochrome P450 1A2. J Photochem Photobiol B Biol 32(3):171–176

    Article  CAS  Google Scholar 

  • Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119, 000 dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    PubMed  CAS  Google Scholar 

  • Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450BM-3. Biochem J 339:371–379

    Article  PubMed  CAS  Google Scholar 

  • Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci USA 94(25):13554–13558

    Article  PubMed  CAS  Google Scholar 

  • Schewe H, Kaup BA, Schrader J (2008) Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl Microbiol Biotechnol 78(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Schwaneberg U, Schmidt-Dannert C, Schmitt J, Schmid RD (1999) A continuous spectrophotometric assay for P-450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal Biochem 269:359–366

    Article  PubMed  CAS  Google Scholar 

  • Shumyantseva VV, Bulko TV, Schmid RD, Archakov AI (2002) Photochemical properties of a riboflavins/cytochrome P450 2B4 complex. Biosens Bioelectron 17:233–238

    Article  PubMed  CAS  Google Scholar 

  • Sugihara N, Ogoma Y, Abe K, Kondo Y, Akaike T (1998) Immobilization of cytochrome P-450 and electrochemical control of its activity. Polym Adv Technol 9(5):307–313

    Article  CAS  Google Scholar 

  • Taylor M, Lamb DC, Cannell RJP, Dawson MJ, Kelly SL (2000) Cofactor recycling with immobilized heterologous cytochrome P450 105D1 (CYP105D1). Biochem Biophys Res Commun 279:708–711

    Article  PubMed  CAS  Google Scholar 

  • Udit AK, Hindoyan N, Hill MG, Arnold FH, Gray HB (2005) Protein-surfactant film voltammetry of wild-type and mutant cytochrome P450 BM3. Inorg Chem 44(12):4109–4111

    Article  PubMed  CAS  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24(7):324–330

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Nassar AEF, Lu Z, Schenkman JB, Rusling JF (1997) Direct electron injection from electrodes to cytochrome P450cam in biomembrane-like films. J Chem Soc, Faraday Trans 93(9):1769–1774

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank R.D. Schmid and V. Urlacher, Stuttgart University, for kindly providing the P450 BM-3 mutant and for helpful advices regarding the enzyme and Ulrich Schwaneberg, Jacobs University Bremen, for kindly providing the pNCA. Parts of the research were supported by the German Federal Ministry of Economics and Technology (BMWi) via the Federation of Industrial Cooperative Research Associations “Otto von Guericke” e.V. (14781 N/1) and by the German Federal Ministry for Food, Agriculture and Consumer Protection (22000504 (04NR005) and 22030905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schrader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtmann, D., Mangold, KM. & Schrader, J. Entrapment of cytochrome P450 BM-3 in polypyrrole for electrochemically-driven biocatalysis. Biotechnol Lett 31, 765–770 (2009). https://doi.org/10.1007/s10529-009-9925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-9925-4

Keywords

Navigation