Skip to main content
Log in

Mouse monoclonal antibodies in biological research: strategies for high-throughput production

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Mouse monoclonal antibodies have become key components in basic research as well as in the clinical laboratory. Being invaluable tools in many biological assays, they continue to be the primary choice in the research field, although the conventional technology used for hybridoma generation and screening is a still lengthy, time-consuming and low-throughput process. With the advent of genetic immunisation and the application of automation and microarray to the traditional biological assays, the monoclonal antibody field has been revolutionised. Here, we will briefly review the most relevant strategies which have made the manufacture of murine monoclonal antibodies a faster and high-throughput technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aucouturier J, Dupuis L, Ganne V (2001) Adjuvants designed for veterinary and human vaccines. Vaccine 19:2666–2672

    Article  PubMed  CAS  Google Scholar 

  • Barry MA, Barry ME, Johnston SA (1994) Production of monoclonal antibodies by genetic immunization. Biotechniques 16:616–620

    PubMed  CAS  Google Scholar 

  • Bohm W, Kuhrober A, Paier T, Mertens T, Reimann J, Schirmbeck R (1996) DNA vector constructs that prime hepatitis B surface antigen-specific cytotoxic T lymphocyte and antibody responses in mice after intramuscular injection. J Immunol Methods 193:29–40

    Article  PubMed  CAS  Google Scholar 

  • Chambers RS, Johnston SA (2003) High-level generation of polyclonal antibodies by genetic immunization. Nat Biotechnol 21:1088–1092

    Article  PubMed  CAS  Google Scholar 

  • Chapman T (2003) Lab automation and robotics: automation on the move. Nature 421:661–666

    PubMed  CAS  Google Scholar 

  • Chen D, Endres RL, Erickson CA, Weis KF, McGregor MW, Kawaoka Y, Payne LG (2000) Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice. Nat Med 6:1187–1190

    Article  PubMed  CAS  Google Scholar 

  • Dale CJ, Thomson S, De Rose R, Ranasinghe C, Medveczky CJ, Pamungkas J, Boyle DB, Ramshaw IA, Kent SJ (2006) Prime-boost strategy in DNA vaccines. Methods Mol Med 127:171–197

    PubMed  CAS  Google Scholar 

  • Davis HL (1997) Plasmid DNA expression systems for the purpose of immunization. Curr Opin Biotechnol 8:635–640

    Article  PubMed  CAS  Google Scholar 

  • De Masi F, Chiarella P, Wilhelm H, Massimi M, Bullard B, Ansorge W, Sawyer A (2005) High-throughput mouse monoclonal antibodies using antigen microarrays. Proteomics 5:4070–4081

    Article  PubMed  CAS  Google Scholar 

  • Hu JG, Ide A, Yokoyama T, Kitagawa T (1989) Studies on the optimal immunization schedule of the mouse as an experimental animal. The effect of antigen dose and adjuvant type. Chem Pharm Bull Tokyo 37:3042–3046

    PubMed  CAS  Google Scholar 

  • Hu JG, Yokoyama T, Kitagawa T (1990) Studies on the optimal immunization schedule of experimental animals.V. The effect of the route of injection, the content of Mycobacteria in Freund’s adjuvant and the emulsifying antigen. Chem Pharm Bull Tokyo 38:1961–1965

    PubMed  CAS  Google Scholar 

  • Huang RP (2001) Simultaneous detection of multiple proteins with an array-based enzyme-linked immunosorbent assay (ELISA) and enhanced chemiluminescence (ECL). Clin Chem Lab Med 39:209–214

    Article  PubMed  CAS  Google Scholar 

  • Kahn MZ, Opdebeeck JP, Tucker IG (1994) Immunopotentiation and delivery systems for antigens for single-step immunization: recent trends and progress. Pharm Res 11:2–11

    Article  Google Scholar 

  • Kasinrerk W, Moonsom S, Chawansuntati K (2002) Production of antibodies by single DNA immunization: comparison of various immunization routes. Hybrid Hybridomics 21:287–293

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick KE, Cutler T, Whitehorn E, Drape RJ, Macklin MD, Witherspoon SM, Singer S, Hutchins JT (1998) Gene gun delivered DNA-based immunizations mediate rapid production of murine monoclonal antibodies to the Flt-3 receptor. Hybridoma 17:569–576

    Article  PubMed  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibodies of predefined specificity. Nature 256:495–497

    Article  PubMed  CAS  Google Scholar 

  • Larsson K, Wester K, Nilsson P, Uhhen M, Hober S, Wernerus H (2006) Multiplexed PrEST immunization for high-throughput affinity proteomics. J Immunol Methods 315:110–120

    Article  PubMed  CAS  Google Scholar 

  • Lohrmann J, Zimmermann W, Thompson J, Grunert F (2004) Genetic immunization by means of multiple expression structures in order to produce monoclonal antibodies. Patent WO/2004/087216, 14 Oct 2004

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR, Kuo CC, Mashayekh R, Wymore K, McCabe JG et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859

    Article  PubMed  CAS  Google Scholar 

  • Lutkemeyer D, Poggendorf I, Scherer T, Zhang J, Knoll A, Lehmann J (2000) First step in robot automation of sampling and sample management during cultivation of mammalian cells in pilot scale. Biotechnol Prog 16:822–828

    Article  PubMed  CAS  Google Scholar 

  • Mendoza LG, McQuary P, Mongan A, Gangadharan R, Brignac S, Eggers M (1999) High-throughput microarray-based enzyme linked immunosorbent assay (ELISA). Biotechniques 27:778–788

    PubMed  CAS  Google Scholar 

  • Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High efficiency gene-transfer into skeletal muscle mediated by electrical pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  PubMed  CAS  Google Scholar 

  • Moore AC, Hill AV (2004) Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunol Rev 199:126–143

    Article  PubMed  CAS  Google Scholar 

  • Nakashima I, Ota F, Kobayashi T, Kato O, Kato N (1974) The effect of antigen doses and time intervals between antigen injections on secondary, tertiary and quaternary antibody responses. Establishment of hyperimmunization with bovine serum albumin in mice treated with capsular polysaccharide of Klebsiella pneumoniae. Immunology 26:443–454

    PubMed  CAS  Google Scholar 

  • Ning Y, Wang Y, Li Y, Hong Y, Peng D, Liu Y, Wang J, Hao W, Tian X, Wu F, Dong W, Wang L, Wu Q, Liu X, Gao J, He F, Qian X, Sun QH, Li M (2006) An alternative strategy for high throughput generation and characterization of monoclonal antibodies against human plasma proteins using fractionated native proteins as immunogens. Proteomics 6:438–448

    Article  PubMed  CAS  Google Scholar 

  • Ny Y, Ma K, Ni J, Zheng X, Wang Y, Xiong S (2004) A rapid and simple approach to preparation of monoclonal antibody based on DNA immunization. Cell Mol Immunol 1:295–299

    Google Scholar 

  • Pasqualini R, Arap W (2004a) Hybridoma-free generation of monoclonal antibodies. Proc Natl Acad Sci USA 101:257–259

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Arap W (2004b) Method for ex vivo hybridoma-free production of polyclonal and monoclonal antibodies and generation of immortalized cell populations. Patent WO/2004/092220, 28 Oct 2004

  • Preis I, Langer RS (1979) A single-step immunization by sustained antigen release. J Immunol Methods 28:193–197

    Article  PubMed  CAS  Google Scholar 

  • Rader C, Barbas CF (1997) Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8:503–508

    Article  PubMed  CAS  Google Scholar 

  • Rohner F, Zeder C, Zimmermann MB, Hurrell RF (2005) Comparison of manual and automated ELISA methods for serum ferritin analysis. J Clin Lab Anal 19:196–198

    Article  PubMed  CAS  Google Scholar 

  • Sawyer A, De Masi F (2003) Method for producing monoclonal antibodies. Patent WO/2003/089471, 30 Oct 2003

  • Siegel DL (2002) Recombinant monoclonal antibody technology. Transfus Clin Biol 9:15–22

    Article  PubMed  CAS  Google Scholar 

  • Terstegge S, Laufenberg I, Pochert J, Schenk S, Itskovitz-Eldor J, Endl E, Brustle O (2007) Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 96:195–201

    Article  PubMed  CAS  Google Scholar 

  • Velikovsky CA, Cassataro J, Sanchez M, Fossati CA, Fainboim L, Spitz M (2000) Single-shot plasmid DNA intrasplenic immunization for the production of monoclonal antibodies. Persistent expression of DNA. J Immunol Methods 244:1–7

    Article  PubMed  CAS  Google Scholar 

  • Yu XF, Liang LH, She M, Liao XL, Gu J, Li YH, Han ZC (2005) Production of a monoclonal antibody against SARS-CoV spike protein with single intrasplenic immunization of plasmid DNA. Immunol Lett 100:177–181

    Article  PubMed  CAS  Google Scholar 

  • Walter G., Bussow K, Cahill D, Lueking A, Lehrach H (2000) Protein arrays for gene expression and molecular interaction screening. Curr Opin Microbiol 3:298–302

    Article  PubMed  CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A special acknowledgement goes to Ario de Marco, Emanuela Signori, Joseph Spalluto and Brendan Fox for critical reading of the manuscript and to Alan Sawyer and Federico De Masi for their profound expertise on high-throughput monoclonal antibody production and microarray technology. This paper was partially supported by MIUR-FIRB 2006: RBIP0695BB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieranna Chiarella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarella, P., Fazio, V.M. Mouse monoclonal antibodies in biological research: strategies for high-throughput production. Biotechnol Lett 30, 1303–1310 (2008). https://doi.org/10.1007/s10529-008-9706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9706-5

Keywords

Navigation