Skip to main content
Log in

Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A recombinant Bacillus subtilis strain (KN25) was generated for the large-scale preparation of catalase. The B. subtilis katA gene encoding for catalase was cloned into the shuttle vector PRB374, downstream of the constitutively active vegII promoter, followed by transformation of the B. subtilis strain WB600 with the plasmid. The transformant strain, KN25 secretes high levels (3,500 U/ml) of catalase, which facilitates its purification. Three simple purification steps yielded nearly homogeneous catalase, with ∼70% recovery. The purified recombinant catalase has a specific activity of 34,600 U/mg under optimal conditions, and is more resistant to acidic conditions than bovine liver catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Assays of catalase in vitro. In: Parker L (eds) Method enzymol, vol 105. New York: Academic Press, p 122

  • Bol DK, Yasbin RE (1991) The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis. Gene 109:31–37

    Article  PubMed  CAS  Google Scholar 

  • Breitling R, Serokin AU, Behnke D (1990) Temperature inducible gene expression in Bacillus subtilis mediated by the I8572 encoded repressor of bacteriophageλ. Gene 93:35

    Article  PubMed  CAS  Google Scholar 

  • Bruckner R (1992) A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122:187–192

    Article  PubMed  CAS  Google Scholar 

  • Dhaese P, Hussey C, van Montagy M (1984) Thermo-inducible gene expression in Bacillus subtilis using transcriptional regulatory elements from temperate phageφ105. Gene 32:181

    Article  PubMed  CAS  Google Scholar 

  • Doi RH, Wong SL, Kawamura F (1986) Potential use of Bacillus subtilis for secretion and production of foreign proteins. Trends Biotechnol 4:232–235

    Article  CAS  Google Scholar 

  • Fusho Y, Yajima Y (1997) Catalase from Bacillus subtilis IAM 1026 (FERM BP-4844). Biotechnol Adv 15:207

    Google Scholar 

  • Huang H, Yang S, Li RB (2001) Optimization of recombinant Penicillin G Acylase expression in Bacillus subtilis. Chinese J Biochem Mol Biol 17:173–177

    Google Scholar 

  • Makiya N, Kenji H, Yuki K, Yukari U, Yoshinobu T, Mitsuru H (2005) Inhibition of metastatic tumor growth by targeted delivery of antioxidant enzymes. J Controlled Release 109:101–107

    Article  Google Scholar 

  • Naclerio G, Baccigalupi L, Caruso C, Defelice M, Ricca E (1995) Bacillus subtilis vegetative catalase is an extracellular enzyme. Appl Environ Microbiol 4471–4473

  • Peschke U, Beuck V, Bujard H, Gentz R, Grice SL (1985) Efficient utilization of Escherichia coli transcriptional signals in Bacillus subtilis. J Mol Biol 186:547–555

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Appendix 2. Media. In: Molecular cloning, a laboratory manual. NY: Cold Springer Harbor Laboratory Press, pp A2.1–A2.12

  • Sambrook J, Fritsch EF, Maniatis T (1989) Alkali-sodium dodecyl method. Isolation of bacteriophage l and plasmid DNA. In: Molecular cloning—A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 76–96

  • Schellhorn HE (1995) Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiol Lett 131:113–119

    Article  PubMed  CAS  Google Scholar 

  • Ware CE, Bauchop T, Gregg K (1989) The isolation and comparison of cellulase genes from two strains of Ruminococcus albus. J Gen Microbiol. 135:921–930

    PubMed  CAS  Google Scholar 

  • Wu SC, Huang H (2004) Expression and functional characterization of Helicobacter pylori catalase from baculovirus-infected insect cells. Enzyme Microb Tech 35:482–487

    Article  CAS  Google Scholar 

  • Xue GP, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Meth 34:183–191

    Article  CAS  Google Scholar 

  • Zhou B, Zhang WC (2004) Advance in protein secretion mechanism of Bacillus subtilis. Lett Biotechnol 15:281–284

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30572276). We thank Professor ZhongYi Yuan at Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China, for providing the B. subtilis WB600 strain and the PRB374 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Guo or Pei Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Feng, M., Zhao, Y. et al. Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis . Biotechnol Lett 30, 181–186 (2008). https://doi.org/10.1007/s10529-007-9510-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9510-7

Keywords

Navigation