Advertisement

Biotechnology Letters

, Volume 29, Issue 11, pp 1793–1796 | Cite as

pGFPGUSPlus, a new binary vector for gene expression studies and optimising transformation systems in plants

  • Claudia E. Vickers
  • Peer M. Schenk
  • Dongxue Li
  • Philip M. Mullineaux
  • Peter M. Gresshoff
Original Research Paper

Abstract

A binary vector containing two reporter gene cassettes has been developed. This vector is ideal for optimising new plant transformation systems. Following optimisation, one of the reporter genes can be replaced with a gene of interest; the second can be used as a marker to confirm transgenic lines, and to estimate locus number and determine zygosity. This allows simple, efficient and economical screening for homozygous single-insert lines and azygous controls.

Keywords

Binary vector GFP GUSPlus Plant transformation Segregation analysis 

Notes

Acknowledgements

This research was supported by Biotechnology and Biological Sciences Research Council grant BBS/B/12172 (CEV and PMM), ARC Centre of Excellence grant CEO348212 (PMG and CEV), the University of Queensland Strategic Research Fund and the Queensland Government Smart State Initiative (PMG) and the Cooperative Research Centre for Tropical Plant Protection (PMS).

References

  1. Broothaerts W, Mitchell HJ, Weir B et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633PubMedCrossRefGoogle Scholar
  2. Chalfie M, Euskirchen G, Ward WW et al (1994) Green fluorescent protein as a marker for gene expression. Science 236:802–805CrossRefGoogle Scholar
  3. Chiu WL, Niwa Y, Zeng W et al (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330PubMedCrossRefGoogle Scholar
  4. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218PubMedCrossRefGoogle Scholar
  5. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37PubMedCrossRefGoogle Scholar
  6. Guerineau F, Brooks L, Meadows J et al (1990) Sulfonamide resistance gene for plant transformation. Plant Mol Biol 15:127–136PubMedCrossRefGoogle Scholar
  7. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  8. Kereszt A, Li D, Indrasumunar A et al (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2(4):948–952PubMedCrossRefGoogle Scholar
  9. Mitsuhara I, Ugaki M, Hirochika H et al (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59PubMedGoogle Scholar
  10. Odell JT, Knowlton S, Lin W et al (1988) Properties of an isolated transcription stimulating sequence derived from the cauliflower mosaic virus 35S promoter. Plant Mol Biol 10:263–272CrossRefGoogle Scholar
  11. Omirulleh S, Ábrahám M, Golovkin M et al (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol Biol 21:415–428PubMedCrossRefGoogle Scholar
  12. Schenk PM, Elliott AR, Manners JM (1998) Assessment of transient gene expression in plant tissues using the green fluorescent protein as a reference. Plant Mol Biol Rep 16:313–322CrossRefGoogle Scholar
  13. Schünmann PHD, Richardson AE, Vickers CE et al (2004) Analysis of the HORvu;Pht1;1 promoter identifies regions controlling root expression and the phosphate response. Plant Physiol 136:4205–4214PubMedCrossRefGoogle Scholar
  14. Vancanneyt G, Schmidt R, O’Connor-Sanchez A et al (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250PubMedCrossRefGoogle Scholar
  15. Vickers CE, Xue G-P, Gresshoff PM (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol 62:195–214PubMedCrossRefGoogle Scholar
  16. Vickers CE, Xue G-P, Gresshoff PM (2003) A synthetic xylanase as a novel reporter in plants. Plant Cell Rep 22:135–140PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Claudia E. Vickers
    • 1
  • Peer M. Schenk
    • 2
  • Dongxue Li
    • 3
  • Philip M. Mullineaux
    • 1
  • Peter M. Gresshoff
    • 3
  1. 1.Department of Biological SciencesThe University of EssexColchesterEngland
  2. 2.School of Integrative BiologyThe University of QueenslandSt Lucia, BrisbaneAustralia
  3. 3.Australian Research Council Centre of Excellence for Integrative Legume ResearchThe University of QueenslandSt Lucia, BrisbaneAustralia

Personalised recommendations