Skip to main content
Log in

Site-directed mutagenesis of the calcium-binding site of α-amylase of Bacillus licheniformis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Amylases that are active under acidic conditions (pH <6), at higher temperatures (>70°C) and have less reliance on Ca2+ are required for starch hydrolysis. The α-amylase gene of Bacillus licheniformis MTCC 6598 was cloned and expressed in Escherichia coli BL21. The calcium-binding site spanning amino acid residues from 104 to 200 in the loop regions of domain B and D430 in domain C of amylase were changed by site-directed mutagenesis and the resultant mutant amylases were analyzed. Calcium-binding residues, N104, D161, D183, D200 and D430, were replaced with D104 and N161, N183, N200 and N430, respectively. Mutant amylase with N104D had a slightly decreased activity at 30°C but a significantly improved specific activity at pH 5 and 70°C, which is desirable character for a food enzyme. The amylase mutants with D183N or D200N lost all activity while the mutant amylase with D161N retained its activity at 30°C but had significantly less activity at 70°C. On the other hand, the activity of the mutant amylase with D430N was not changed at 30°C but had an improved activity at 70°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brzozowski AM, Lawson DM, Turkenburg JP, Frantzen HB, Svendsen A, Borchert TV, Dauter Z, Wilson KS, Davies GJ (2000) Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39:9099–9107

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2003) PyMOL reference manual. DeLano Scientific LLC, San Carlos, CA

    Google Scholar 

  • Declerck N, Joyet P, Trosset JY, Garnier J, Gaillardin C (1995) Hyperthermostable mutants of Bacillus licheniformis α-amylase: multiple amino acid replacements and molecular modelling. Protein Eng 8:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Declerck N, Machius M, Chambert R, Wiegand G, Huber R, Gaillardin C (1997) Hyperthermostable mutants of Bacillus licheniformis α-amylase: thermodynamic studies and structural interpretation. Protein Eng 10:541–549

    Article  PubMed  CAS  Google Scholar 

  • Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis α-Amylase. J Mol Biol 301:1041–1057

    Article  PubMed  CAS  Google Scholar 

  • Declerck N, Machius M, Joyet P, Wiegand G, Huber R, Gaillardin C (2002) Engineering the thermostability of Bacillus licheniformis α-amylase. Biologia Bratislava 11:203–211

    Google Scholar 

  • Declerck N, Machius M, Joyet P, Wiegand G, Huber R, Gaillardin C (2003) Hyperthermostabilization of Bacillus licheniformis α-amylase and modulation of its stability over a 50°C temperature range. Protein Eng 16:101–107

    Article  Google Scholar 

  • Hagihara H, Hayashi Y, Endo K, Igarashi K, Ozawa T, Kawai S, Ozaki K, Ito S (2001) Deduced amino-acid sequence of a calcium-free alpha-amylase from a strain of Bacillus: implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme. Eur J Biochem 268:3974–3982

    Article  PubMed  CAS  Google Scholar 

  • Hashida M, Bisgaard-Frantzen H (2000) Protein engineering of new industrial amylases. Trends Glycosci Glycotechnol 12:389–401

    CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Igarashi K, Hatada Y, Ikawa K, Araki H, Ozawa T, Kobayashi T, Ozaki K, Ito S (1998a) Improved thermostability of a Bacillus α-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem Biophys Res Commun 248:372–377

    Article  PubMed  CAS  Google Scholar 

  • Igrashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T et al (1998b) Enzymatic properties of a novel liquefying α amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences .Appl Environ Microbiol 64:3282–3289

    Google Scholar 

  • Janecek S (1997) α-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67:67–97

    Article  PubMed  CAS  Google Scholar 

  • Kuriki T, Kaneko H, Yanase M, Takata H, Shimada J, Handa S, Takada T, Umeyama H, Okada S (1996) Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J Biol Chem 271:17321–17329

    Article  PubMed  CAS  Google Scholar 

  • Lin LL, Chyau CC, Hsu WH (1998) Production and properties of a raw-starch-degrading α-amylase from thermophilic and alkaliphilic Bacillus sp. TS-23 Biotech Appl Biochem 28:61–68

    CAS  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder–order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad. Structure 6:281–292

    Article  PubMed  CAS  Google Scholar 

  • Matsui I, Svensson B (1997) Improved activity and modulated action pattern obtained by random mutagenesis at the fourth beta-alpha loop involved in substrate binding to the catalytic (β/α)8–barrel domain of barley α-amylase. J Biol Chem 272:22456–22463

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor., NY

    Google Scholar 

  • Nakajima R, Imanaka T, Aiba S (1985) Nucleotide sequence of the Bacillus stearothermophilus alpha-amylase gene. J Bacteriol 163:401–406

    PubMed  CAS  Google Scholar 

  • Nonaka T, Fujihashi M, Kita A, Hagihara H, Ozaki K, Ito S, Miki K (2003) Crystal structure of calcium-free alpha-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites. J Biol Chem 278:24818–24824

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JE, Beier L, Otzen D, Borchert TV, Frantzen HB, Andersen KV, Svendsen A (1999) Electrostatics in the active site of an α-amylase. Eur J Biochem 264: 816–824

    Article  PubMed  CAS  Google Scholar 

  • Shaw A, Bott R, Day AG (1999) Protein engineering of α-amylase for low pH performance. Curr Opin Biotechnol 10:349–352

    Article  PubMed  CAS  Google Scholar 

  • Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H (2001) Crystal structure of Bacillus stearothermophilus alpha-amylase: possible factors determining the thermostability. J Biochem 129:461–468

    PubMed  CAS  Google Scholar 

  • Takkinen K, Pettersson RF, Kalkkinen N, Palva I, Soederlund H, Kaeaeriaeinen L (1983) Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J Biol Chem 258:1007–1013

    PubMed  CAS  Google Scholar 

  • Yuuki T, Nomura T, Tezuka H, Tsuboi A, Yamagata H, Tsukagoshi N, Udaka S (1985) complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J Biochem 98:1147–1156

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Biotechnology, India for the financial assistant through project No BT/PR 4549/PID/20/176/2003 and Center for Excellence in Genomics, Madurai Kamaraj University for providing the infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramasamy Gunasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priyadharshini, R., Gunasekaran, P. Site-directed mutagenesis of the calcium-binding site of α-amylase of Bacillus licheniformis . Biotechnol Lett 29, 1493–1499 (2007). https://doi.org/10.1007/s10529-007-9428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9428-0

Keywords

Navigation