Skip to main content
Log in

Trimethylamine-N-oxide, a New Risk Factor for Non-alcoholic Fatty Liver Disease Changes the Expression of miRNA-34a, and miRNA-122 in the Fatty Liver Cell Model

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease is a multifactorial disorder with complicated pathophysiology ranging from simple steatosis to steatohepatitis and liver fibrosis. Trimethylamine-N-oxide (TMAO) production is believed to be correlated with choline deficiency. This study investigated the expression of miRNA-34a, miRNA-122, and miRNA-192 in the fatty liver cell model treated with different concentrations of TMAO. A fatty liver cell model was developed by exposing HepG2 cells to a mixture of palmitate and oleate in a ratio of 1:2 at a final concentration of 1200 μM for 24 h. The confirmed fatty liver cells were treated with 37.5, 75, 150, and 300 μM of TMAO for 24 h. RT-qPCR was used to quantify the expression of microRNAs in a cellular model. The cellular expression of all microRNAs was significantly higher in treated fatty liver cells compared to normal HepG2 cells (P < 0.05). Only 75 and 150 µM of TMAO significantly increased the expression of miRNA-34a and miRNA-122 compared to both fatty and normal control cells (P < 0.05). Our results provided an experimental documentation for the potential effect of TMAO to change the expression of miR-34a and miR-22 as a mechanism for contributing to the pathogenesis of non-alcoholic fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study are available upon reasonable request.

References

  • Abdolahi A, Vahabzadeh Z, Izadpanah E, Moloudi MR (2022) Vaspin attenuates steatosis-induced fibrosis via GRP78 receptor by targeting AMPK signaling pathway. J Physiol Biochem 78(1):185–197

    Article  CAS  PubMed  Google Scholar 

  • Baranova A, Maltseva D, Tonevitsky A (2019) Adipose may actively delay progression of NAFLD by releasing tumor-suppressing, anti-fibrotic miR-122 into circulation. Obes Rev 20(1):108–118

    Article  CAS  PubMed  Google Scholar 

  • Béres NJ, Szabó D, Kocsis D, Szűcs D, Kiss Z, Müller KE, Lendvai G, Kiss A, Arató A, Sziksz E (2016) Role of altered expression of miR-146a, miR-155, and miR-122 in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 22(2):327–335

    Article  PubMed  Google Scholar 

  • Boumelhem BB, Pilgrim C, Zwicker VE, Kolanowski JL, Yeo JH, Jolliffe KA, New EJ, Day ML, Assinder SJ, Fraser ST (2022) Intracellular flow cytometric lipid analysis—a multiparametric system to assess distinct lipid classes in live cells. J Cell Sci 135(5):jcs258322

    Article  CAS  PubMed  Google Scholar 

  • Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu JD, Zhang Q-Y, Mi MT (2016a) Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. Mbio 7(2):e02210-02215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, Wang LJ, Zheng RD, Zhang HW, Ling WH (2016b) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6(1):1–9

    Google Scholar 

  • Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48(6):1810–1820

    Article  CAS  PubMed  Google Scholar 

  • Cornatzer W (1955) Lipotropic action of choline in liver disease. J Lancet 75(3):114–117

    CAS  PubMed  Google Scholar 

  • Dai X, Hou H, Zhang W, Liu T, Li Y, Wang S, Wang B, Cao H (2020) Microbial metabolites: critical regulators in NAFLD. Front Microbiol 11:567654

    Article  PubMed  PubMed Central  Google Scholar 

  • Díez-Ricote L, Ruiz-Valderrey P, Micó V, Blanco-Rojo R, Tomé-Carneiro J, Dávalos A, Ordovás JM, Daimiel L (2021) Trimethylamine n-oxide (TMAO) modulates the expression of cardiovascular disease-related microRNAs and their targets. Int J Mol Sci 22(20):11145

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding J, Li M, Wan X, Jin X, Chen S, Yu C, Li Y (2015a) Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep 5(1):1–10

    Article  Google Scholar 

  • Ding J, Li M, Wan X, Jin X, Chen S, Yu C, Li Y (2015b) Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep 5(1):13729

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, Zhang T, Wang Y (2018) Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis 17(1):1–8

    Article  CAS  Google Scholar 

  • Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL (2018) miRNA signature in NAFLD: a turning point for a non-invasive diagnosis. Int J Mol Sci 19(12):3966

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezaz G, Trivedi HD, Connelly MA, Filozof C, Howard K, Parrish ML, Kim M, Herman MA, Nasser I, Afdhal NH (2020) Differential associations of circulating MicroRNAs with pathogenic factors in NAFLD. Hepatology Communications 4(5):670–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Guerrero JL, Post A, van Dijk PR, Connelly MA, Garcia E, Navis G, Bakker SJ, Dullaart RP (2021) Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease. Liver Int 41(10):2371–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24(7):908–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz M, Szabo G (2013) Immune and inflammatory pathways in NASH. Hep Intl 7(2):771–781

    Article  Google Scholar 

  • Gjorgjieva M, Sobolewski C, Ay AS, Abegg D, Correia de Sousa M, Portius D, Berthou F, Fournier M, Maeder C, Rantakari P (2020) Genetic ablation of miR-22 fosters diet-induced obesity and NAFLD development. J Personal Med 10(4):170

    Article  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(3):965–973

    Article  CAS  PubMed  Google Scholar 

  • Gunn PJ, Green CJ, Pramfalk C, Hodson L (2017) In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiol Rep 5(24):e13532

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurtan AM, Sharp PA (2013) The role of miRNAs in regulating gene expression networks. J Mol Biol 425(19):3582–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Duan X, Fan J, Li G, Wang B (2019) Role of noncoding RNA in development of nonalcoholic fatty liver disease. BioMed Res Int. https://doi.org/10.1155/2019/8690592

    Article  PubMed  PubMed Central  Google Scholar 

  • Jampoka K, Muangpaisarn P, Khongnomnan K, Treeprasertsuk S, Tangkijvanich P, Payungporn S (2018) Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD). Microrna 7(3):215–222

    Article  CAS  PubMed  Google Scholar 

  • Li M, Guo K, Vanella L, Taketani S, Adachi Y, Ikehara S (2015) Stem cell transplantation upregulates Sirt1 and antioxidant expression, ameliorating fatty liver in type 2 diabetic mice. Int J Biol Sci 11(4):472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Deng M, Hu J, Li X, Chen L, Ju Y, Hao J, Meng S (2016) Chronic inflammation contributes to the development of hepatocellular carcinoma by decreasing miR-122 levels. Oncotarget 7(13):17021

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wu Z, Yan J, Liu H, Liu Q, Deng Y, Ou C, Chen M (2019) Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Invest 99(3):346–357

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dai M (2020) Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation: new insights into atherosclerosis. Med Inflam. https://doi.org/10.1155/2020/4634172

    Article  Google Scholar 

  • Liu XL, Cao HX, Fan JG (2016) MicroRNAs as biomarkers and regulators of nonalcoholic fatty liver disease. J Dig Dis 17(11):708–715

    Article  CAS  PubMed  Google Scholar 

  • Liu XL, Cao HX, Wang BC, Xin FZ, Zhang RN, Zhou D, Yang RX, Zhao ZH, Pan Q, Fan JG (2017) miR-192-5p regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1. World J Gastroenterol 23(46):8140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Shao Y, Tu J, Sun J, Li L, Tao J, Chen J (2021) Trimethylamine-n-oxide-stimulated hepatocyte-derived exosomes promote inflammation and endothelial dysfunction through nuclear factor-kappa b signaling. Ann Transl Med. https://doi.org/10.21037/atm-21-5043

    Article  PubMed  PubMed Central  Google Scholar 

  • Long JK, Dai W, Zheng YW, Zhao S-P (2019) miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med 25(1):1–13

    Article  CAS  Google Scholar 

  • Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, Kellum J, Warnick R, Contos MJ, Sanyal AJ (2012) Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 15(5):665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi A, Vahabzadeh Z, Jamalzadeh S, Khalili T (2018) Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A. 1 murine macrophages. Adv Med Sci 63(1):57–63

    Article  PubMed  Google Scholar 

  • Panera N, Gnani D, Crudele A, Ceccarelli S, Nobili V, Alisi A (2014) MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease. World J Gastroenterol: WJG 20(41):15079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patell R, Dosi R, Joshi H, Sheth S, Shah P, Jasdanwala S (2014) Non-alcoholic fatty liver disease (NAFLD) in obesity. J Clin Diagn Res: JCDR 8(1):62

    PubMed  PubMed Central  Google Scholar 

  • Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9(4):327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raitoharju E, Seppälä I, Lyytikäinen LP, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, Klopp N, Illig T (2016) Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism—the young finns study. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Rath S, Rud T, Pieper DH, Vital M (2020) Potential TMA-producing bacteria are ubiquitously found in mammalia. Front Microbiol 10:2966

    Article  PubMed  PubMed Central  Google Scholar 

  • Salman M, Kamel MA, El-Nabi SEH, Ismail AHA, Ullah S, Al-Ghamdi A, Hathout HM, El-Garawani IM (2022) The regulation of HBP1, SIRT1, and SREBP-1c genes and the related microRNAs in non-alcoholic fatty liver rats: The association with the folic acid anti-steatosis. PLoS ONE 17(4):e0265455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM (2016) Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc 5(2):e002767

    Article  PubMed  PubMed Central  Google Scholar 

  • Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, Qi H, Wu J, Pan C, Brown JM (2015) Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis [S]. J Lipid Res 56(1):22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung YM (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zalzala M, Xu J, Li Y, Yin L, Zhang Y (2015) A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipoprotein metabolism. Nat Commun 6(1):1–11

    Article  CAS  Google Scholar 

  • Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, Tian L, Li X, Liu L, Xing Y (2019) Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol 10:1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was conducted as a dissertation of a master's student in clinical biochemistry. The study was supported financially by vice chancellor in research of Kurdistan University of Medical Sciences [grant numbers IR.MUK.REC.1398.315].

Author information

Authors and Affiliations

Authors

Contributions

ZB carried out the sample collection, all laboratory works, and final report preparation. MRM has given advice on the project and assisted with manuscript preparation. MM contributes to statistical analysis and writing manuscript. AA helped with sample collection. ZV carried out the design, supervised the study, and prepared the manuscript. The manuscript’s contents have been read and approved by all authors. The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Zakaria Vahabzadeh.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interest and nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramirad, Z., Moloudi, M.R., Moradzad, M. et al. Trimethylamine-N-oxide, a New Risk Factor for Non-alcoholic Fatty Liver Disease Changes the Expression of miRNA-34a, and miRNA-122 in the Fatty Liver Cell Model. Biochem Genet (2024). https://doi.org/10.1007/s10528-024-10754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-024-10754-0

Keywords

Navigation