Skip to main content
Log in

Comprehensive Evolution and Expression anaLysis of PHOSPHATE 1 Gene Family in Allotetraploid Brassica napus and Its Diploid Ancestors

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The members of PHOSPHATE 1 (PHO1) family play important roles in plant phosphate (Pi) transport and adaptation to Pi deficiency. The functions of PHO1 family proteins have been reported in several plant species, with the exception of Brassica species. Here, we identified 23, 23, and 44 putative PHO1 family genes in Brassica rapa, Brassica oleracea, and Brassica napus by whole genome analysis, respectively. The phylogenetic analysis divided PHO1 family proteins into eight groups, which represented the orthologous relationships among PHO1 members. The gene structure and the conserved motif analysis indicated that the most PHO1 family genes had similar gene structures and the PHO1 proteins shared mutual conserved motifs. The chromosome distribution analysis showed that the majority of BnPHO1 family genes distributed analogously at chromosomes with BrPHO1 and BoPHO1 family genes. The data showed that PHO1 family genes were highly conserved during evolution from diploid to tetraploid. Furthermore, the expression analysis showed that PHO1 family genes had different expression patterns in plant tissues, suggesting the diversity of gene functions in Brassica species. Meanwhile, the expression analysis also revealed that some PHO1 family genes were significantly responsive to Pi deficiency, suggesting that PHO1 family genes play critical roles in Pi uptake and homeostasis under low Pi stress. Altogether, the characteristics of PHO1 family genes provide a reliable groundwork for further dissecting their functions in Brassica species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Achaz G, Coissac E, Viari A, Netter P (2000) Analysis of intrachromosomal duplications in yeast saccharomyces cerevisiae: a possible model for their origin. Mol Biol Evol 17:1268–1275

    CAS  PubMed  Google Scholar 

  • Bailey T, Boden M, Buske F, Frith M, Grant C, Clementi L, Ren J, Li W, Noble W (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Hokamp K, Wolfe K (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon S, Mitra A, Baumgarten A, Young N, May G (2004) The evolutionary position of subfunctionalization downgraded. BMC Plant Biol 4:10

    PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin I, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas H, Frank M, He Y, Xia R (2020) An integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    PubMed  PubMed Central  Google Scholar 

  • Finn R, Bateman A, Clements J et al (2013) The protein families database. Nucleic Acids Res 42:D222–D230

    PubMed  PubMed Central  Google Scholar 

  • Freeling M (2008) The evolutionary position of subfunctionalization, downgraded. Genome Dyn 4:25–40

    CAS  PubMed  Google Scholar 

  • Gasteiger E (2003) The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo A (2007) A gene structure display server. Hereditas 29:1023–1026

    CAS  PubMed  Google Scholar 

  • Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C, Poirier Y (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14:889–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park K, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) Protein localization predictor. Nucleic Acids Res 35:W585–W587

    PubMed  PubMed Central  Google Scholar 

  • Johnston J, Pepper A, Hall A, Chen Z, Hodnett G, Drabek J, Lopez R, Price H (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2016) An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Li M, Liu Z, Wang J (2019) Genome-wide identification and characterization of the Hsp70 gene family in allopolyploid rapeseed (Brassica napus L.) compared with its diploid progenitors. PeerJ 7:e7511

    PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Google Scholar 

  • Lysak M, Koch M, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao L, Gao Y, Zhao K, Kong L, Yu S, Li R, Liu K, Yu X (2020) Comparative analysis of basic helix–loop–helix gene family among Brassica oleracea, Brassica rapa and Brassica napus. BMC Genomics 21:178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misson J, Raghothama K, Jain A, Jouhet J, Block M, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell A, Chang H, Daugherty L et al (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–D221

    PubMed  Google Scholar 

  • Morant M, Hehn A, Werck-Reichhart D (2002) Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC Plant Biol 2:7

    PubMed  PubMed Central  Google Scholar 

  • Mun J, Kwon S, Yang T et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Clua J, Vetal P, Vuarambon D, De Bellis D, Pervent M, Lepetit M, Udvardi M, Valentine A, Poirier Y (2020) PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula. Plant Physiol 185:196–209

    PubMed Central  Google Scholar 

  • Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book 1:e24

    Google Scholar 

  • Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97:1087–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghothama K (1999) Phosphate acquisition. Plant Physiol 50:665–693

    CAS  Google Scholar 

  • Ren F, Zhao CZ, Liu CS, Huang KL, Guo QQ, Chang LL, Xiong H, Li XB (2014) A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis. Plant Mol Biol 86:595–607

    CAS  PubMed  Google Scholar 

  • Ribot C, Zimmerli C, Farmer E, Reymond P, Poirier Y (2008) Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol 147:696–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouached H, Stefanovic A, Secco D, Bulak Arpat A, Gout E, Bligny R, Poirier Y (2011) Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant J 65:557–570

    CAS  PubMed  Google Scholar 

  • Salazar-Vidal M, Acosta-Segovia E, Sánchez-León N, Ahern K, Brutnell T, Sawers R (2016) Characterization and transposon mutagenesis of the Maize (Zea mays) PHO1 gene family. PLoS ONE 11:e161882

    Google Scholar 

  • Secco D, Baumann A, Poirier Y (2010) Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiol 152:1693–1704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D et al (2011) Fast scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    PubMed  PubMed Central  Google Scholar 

  • Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007) Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J 50:982–994

    CAS  PubMed  Google Scholar 

  • Sun F, Fan G, Hu Q et al (2017) The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J 92:452–468

    CAS  PubMed  Google Scholar 

  • Tong C, Wang X, Yu J, Wu J, Li W, Huang J, Dong C, Hua W, Liu S (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 14:689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Town C, Cheung F, Maiti R et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vance C, Uhde-Stone C, Allan D (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  PubMed  Google Scholar 

  • Wang Y, Ribot C, Rezzonico E, Poirier Y (2004) Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol 135:400–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Secco D, Poirier Y (2008) Characterization of the PHO1 gene family and the responses to phosphate deficiency of physcomitrella patens. Plant Physiol 146:646–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    CAS  PubMed  Google Scholar 

  • Wei L, Yang B, Jian H et al (2019) Genome-wide identification and characterization of Gretchen Hagen3 (GH3) family genes in Brassica napus. Genome 62:597–608

    CAS  PubMed  Google Scholar 

  • Williamson L, Ribrioux S, Fitter A, Leyser H (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng X (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, Liu S (2014) Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics 15:3

    PubMed  PubMed Central  Google Scholar 

  • Zhao W, Liu H, Zhang L, Hu Z, Liu J, Hua W, Xu S, Liu J (2019) Genome-wide identification and characterization of FBA gene family in polyploid crop Brassica napus. Int J Mol Sci 20:5749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Wu D, Jiang L, Ye L (2020) Genome-wide identification and characterization of SnRK family genes in Brassica napus. BMC Plant Biol 20:287

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China (Grant No. 31971814, 31571572) and the Project of Wuhan Knowledge Innovation (Grant No. 2022020801010275).

Author information

Authors and Affiliations

Authors

Contributions

JFZ, HHC, and FR designed the research; JFZ, HHC, DL, GJM, and YYL performed the experiments; JFZ, YKT, and JL analyzed the data; JFZ, HHC, and FR wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Feng Ren.

Ethics declarations

Conflict of interest

The authors have no relevant financial and nonfinancial interests to disclose.

Ethical Approval

This study was performed with plants and ethical approval is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JF., Chu, HH., Liao, D. et al. Comprehensive Evolution and Expression anaLysis of PHOSPHATE 1 Gene Family in Allotetraploid Brassica napus and Its Diploid Ancestors. Biochem Genet 61, 2330–2347 (2023). https://doi.org/10.1007/s10528-023-10375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-023-10375-z

Keywords

Navigation