Skip to main content

Advertisement

Log in

CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges

  • Review
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

A novel gene editing tool, the Cas system, associated with the CRISPR system, is emerging as a potential method for genome modification. This simple method, based on the adaptive immune defense system of prokaryotes, has been developed and used in human cancer research. These technologies have tremendous therapeutic potential, especially in gene therapy, where a patient-specific mutation is genetically corrected to cure diseases that cannot be cured with conventional treatments. However, translating CRISPR/Cas9 into the clinic will be challenging, as we still need to improve the efficiency, specificity, and application of the technology. In this review, we will explain how CRISPR-Cas9 technology can treat cancer at the molecular level, focusing on ordination and the epigenome. We will also focus on the promise and shortcomings of this system to ensure its application in the treatment and prevention of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Correspondence and should be addressed to Alinour65@gmail.com.

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:6299

    Article  CAS  Google Scholar 

  • Alves E, Taifour S, Dolcetti R, Chee J, Nowak AK, Gaudieri S, Blancafort P (2021) Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Mol Ther Methods Clin Dev. https://doi.org/10.1016/j.omtm.2021.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arechavaleta-Velasco F, Perez-Juarez CE, Gerton GL, Diaz-Cueto L (2017) Progranulin and its biological effects in cancer. Med Oncol 34(12):1–11

    Article  CAS  Google Scholar 

  • Asad AS, Moreno Ayala MA, Gottardo MF, Zuccato C, Nicola Candia AJ, Zanetti FA et al (2017) Viral gene therapy for breast cancer: progress and challenges. Expert Opin Biol Ther 17(8):945–959

    Article  CAS  PubMed  Google Scholar 

  • Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ et al (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24(3):556–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Beltran AS, Blancafort P (2011) Reactivation of MASPIN in non-small cell lung carcinoma (NSCLC) cells by artificial transcription factors (ATFs). Epigenetics 6(2):224–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benamar M, Guessous F, Du K, Corbett P, Obeid J, Gioeli D et al (2016) Inactivation of the CRL4-CDT2-SET8/p21 ubiquitylation and degradation axis underlies the therapeutic efficacy of pevonedistat in melanoma. EBioMedicine 10:85–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Berardi R, Torniai M, Lenci E, Pecci F, Morgese F, Rinaldi S (2019) Electrolyte disorders in cancer patients: a systematic review. J Cancer Metast Treat. https://doi.org/10.20517/2394-4722.2019.008

    Article  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 68(6):394–424

    PubMed  Google Scholar 

  • Brown A, Winter J, Gapinske M, Tague N, Woods WS, Perez-Pinera P (2019) Multiplexed and tunable transcriptional activation by promoter insertion using nuclease-assisted vector integration. Nucleic Acids Res 47:e67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet E, Jasin M (2018) Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. In: Zhang Y (ed) Chromosome translocation. Springer, Singapore, pp 15–25

    Chapter  Google Scholar 

  • Bu X, Kato J, Hong JA, Merino MJ, Schrump DS, Lund FE, Moss J (2018) CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis 39(2):242–251

    Article  CAS  PubMed  Google Scholar 

  • Burmistrz M, Krakowski K, Krawczyk-Balska A (2020) RNA-targeting CRISPR–Cas systems and their applications. Int J Mol Sci 21(3):1122

    Article  CAS  PubMed Central  Google Scholar 

  • Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ (2019) Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 16:887–893

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z et al (2014a) MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25(5):652–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Choi J, Bailey S (2014b) Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289(19):13284–13294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Liu J, Ho TT, Ding X, Mo YY (2016) ERK-mediated NF-κB activation through ASIC1 in response to acidosis. Oncogenesis 5(12):e279–e279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387):436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J (2019) CRISPR-Cas9 for cancer therapy: opportunities and challenges. Cancer Lett 447:48–55

    Article  CAS  PubMed  Google Scholar 

  • Chira S, Gulei D, Hajitou A, Berindan-Neagoe I (2018) Restoring the p53 ‘Guardian’phenotype in p53-deficient tumor cells with CRISPR/Cas9. Trends Biotechnol 36(7):653–660

    Article  PubMed  CAS  Google Scholar 

  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi PS, Meyerson M (2014) Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5(1):1–6

    Article  CAS  Google Scholar 

  • Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10(5):726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa JR, Bejcek BE, McGee JE, Fogel AI, Brimacombe KR, Ketteler R (2017) Genome editing using engineered nucleases and their use in genomic screening. In Assay Guidance Manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences

  • Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyda F, Hickman AB (2015) Mechanism of spacer integration links the CRISPR/Cas system to transposition as a form of mobile DNA. Mob DNA 6(1):1–5

    Article  CAS  Google Scholar 

  • Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE (2017) Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat Rev Drug Discov 16(2):89–100

    Article  CAS  PubMed  Google Scholar 

  • Fidler MM, Bray F (2018) Global cancer inequalities. Front Oncol 8:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii M, Clevers H, Sato T (2019) Modeling human digestive diseases with CRISPR-Cas9–modified organoids. Gastroenterology 156(3):562–576

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Epstein BE, Schaffer DV (2016) Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther 24(3):458–464

    Article  CAS  PubMed  Google Scholar 

  • Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B et al (2014) Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 55(6):829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunel NS, Birden N, Kurt CC, Bagca BG, Shademan B, Sogutlu F, Ozates NP, Avci CB (2021) Effect of valproic acid on miRNAs affecting histone deacetylase in a model of anaplastic thyroid cancer. Mol Biol Rep 48:6085–6091

    Article  CAS  PubMed  Google Scholar 

  • Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Investig 124(10):4154–4161

    Article  PubMed  PubMed Central  Google Scholar 

  • Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24(7):927–930

    Article  CAS  PubMed  Google Scholar 

  • Han HA, Pang JKS, Soh BS (2020) Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med 98(5):615–632

    Article  CAS  PubMed  Google Scholar 

  • Harrod A, Fulton J, Nguyen VT, Periyasamy M, Ramos-Garcia L, Lai CF et al (2017) Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene 36(16):2286–2296

    Article  CAS  PubMed  Google Scholar 

  • Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163(6):1515–1526

    Article  CAS  PubMed  Google Scholar 

  • He H, Liu X, Liu Y, Zhang M, Lai Y, Hao Y, Wang Q, Shi D, Wang N, Luo XG, Ma W (2019) Human papillomavirus E6/E7 and long noncoding RNA TMPOP2 mutually upregulated gene expression in cervical cancer cells. J Virol 93(8):e01808-e1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofacker D, Broche J, Laistner L, Adam S, Bashtrykov P, Jeltsch A (2020) Engineering of effector domains for targeted DNA methylation with reduced offtarget effects. Int J Mol Sci 21:502

    Article  CAS  PubMed Central  Google Scholar 

  • Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K (2014) Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Res Int. https://doi.org/10.1155/2014/612823

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y-H, Su J, Lei Y, Brunetti L, Gundry MC, Zhang X, Jeong M, Li W, Goodell MA (2017) DNA epigenome editing using CRISPR-Cas SunTagdirected DNMT3A. Genome Biol 18:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K et al (2018) p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 24(7):939–946

    Article  CAS  PubMed  Google Scholar 

  • Isazadeh A, Hajazimian S, Shadman B, Safaei S, Bedoustani AB, Chavoshi R et al (2020) Anti-cancer effects of probiotic Lactobacillus acidophilus for colorectal cancer cell line caco-2 through apoptosis induction. Pharmaceutical Sciences 27(2):262–267

    Article  Google Scholar 

  • Jadid MFS, Shademan B, Chavoshi R, Seyyedsani N, Aghaei E, Taheri E et al (2021) Enhanced anticancer potency of hydroxytyrosol and curcumin by PLGA-PAA nano-encapsulation on PANC-1 pancreatic cancer cell line. Environ Toxicol 36(6):1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Jansen R, Embden JDV, Gaastra W, Schouls LM (2002a) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Jansen R, van Embden JD, Gaastra W, Schouls LM (2002b) Identification of a novel family of sequence repeats among prokaryotes. OMICS 6(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalaf K, Janowicz K, Dyszkiewicz-Konwińska M, Hutchings G, Dompe C, Moncrieff L et al (2020) CRISPR/Cas9 in cancer immunotherapy: animal models and human clinical trials. Genes 11(8):921

    Article  CAS  PubMed Central  Google Scholar 

  • Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kline CLB, Ralff MD, Lulla AR, Wagner JM, Abbosh PH, Dicker DT et al (2018) Role of dopamine receptors in the anticancer activity of ONC201. Neoplasia 20(1):80–91

    Article  CAS  PubMed  Google Scholar 

  • Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267–273

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Wang H, Luo Q, Huang S, Lin S, Zheng Y, Chen Q (2017) The relationship between DNA methylation and Reprimo gene expression in gastric cancer cells. Oncotarget 8(65):108610

    Article  PubMed  PubMed Central  Google Scholar 

  • Lertsuwan K, Choe LH, Marwa IR, Lee K, Sikes RA (2017) Identification of fibulin-1 as a human bone marrow stromal (HS-5) cell-derived factor that induces human prostate cancer cell death. Prostate 77(7):729–742

    Article  CAS  PubMed  Google Scholar 

  • Leung THY, Tang HWM, Siu MKY, Chan DW, Chan KKL, Cheung ANY, Ngan HYS (2018) Human papillomavirus E6 protein enriches the CD55 (+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness. J Pathol 244(2):151–163

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5(1):1–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25(1):1234–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, Sun Y (2015) In vitro CRISPR/Cas9 system for efficient targeted DNA editing. Mbio. https://doi.org/10.1128/mBio.01714-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR (2018) CRISPR/Cas9 system: a bacterial tailor for genomic engineering. Genetics Res Int. https://doi.org/10.1155/2018/3797214

    Article  Google Scholar 

  • Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC et al (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547(7664):413–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ et al (2020) In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 11(1):1–14

    Article  CAS  Google Scholar 

  • Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y et al (2015) Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med 21(3):256–262

    Article  CAS  PubMed  Google Scholar 

  • Maus MV, Grupp SA, Porter DL, June CH (2014) Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123(17):2625–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza Z, Karim S (2019) Advancements in CRISPR/Cas9 technology—focusing on cancer therapeutics and beyond. Semin Cell Dev Biol 96:13–21

    Article  CAS  PubMed  Google Scholar 

  • Modell JW, Jiang W, Marraffini LA (2017) CRISPR–Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544(7648):101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10(8):550–560

    Article  CAS  PubMed  Google Scholar 

  • Murovec J, Pirc Ž, Yang B (2017) New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J 15(8):917–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy M, Chatterjee SS, Jain S, Katari M, DasGupta R (2016) TCF7L1 modulates colorectal cancer growth by inhibiting expression of the tumor-suppressor gene EPHB3. Sci Rep 6(1):1–12

    Article  CAS  Google Scholar 

  • Naeem M, Majeed S, Hoque MZ, Ahmad I (2020) Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9(7):1608

    Article  CAS  PubMed Central  Google Scholar 

  • Nagai H, Kim YH (2017) Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 9(3):448

    Article  PubMed  PubMed Central  Google Scholar 

  • Najah S, Saulnier C, Pernodet JL, Bury-Moné S (2019) Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci. BMC Biotechnol 19(1):1–8

    Article  Google Scholar 

  • Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G et al (2021) Novel CRISPR–Cas systems: an updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci 22(7):3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira Furtado R (2019) Gene editing: the risks and benefits of modifying human DNA. Revista Bioetica 27(2):223–233

    Google Scholar 

  • Novellasdemunt L, Foglizzo V, Cuadrado L, Antas P, Kucharska A, Encheva V et al (2017) USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep 21(3):612–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T, Manchado E et al (2017) Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol 35(6):577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozates NP, Soğutlu F, Lerminoglu F, Demir B, Gunduz C, Shademan B, Avci CB (2021) Effects of rapamycin and AZD3463 combination on apoptosis, autophagy, and cell cycle for resistance control in breast cancer. Life Sci 264:118643

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B, Caliskan Kurt C, Shademan B, Gunduz C, Erdogan M (2020) Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol 34(10):e22547

    Article  CAS  PubMed  Google Scholar 

  • Petersen B (2017) Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 52:4–13

    Article  CAS  PubMed  Google Scholar 

  • Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, Polo JM, Ford E, Lister R (2018) A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res 28:1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran G, Rengan AK (2020) Aptamer-mediated nanotheranostics for cancer treatment: a review. ACS Appl Nano Mater 3(10):9542–9559

    Article  CAS  Google Scholar 

  • Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A et al (2017) Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171(2):481–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Zhao Y (2017) Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 8(9):634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, Blancafort P (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7(4):350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE et al (2017) Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med 23(11):1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadatpour Z, Rezaei A, Ebrahimnejad H, Baghaei B, Bjorklund G, Chartrand M et al (2017) Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther 24(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva M, Sachdeva N, Pal M, Gupta N, Khan IA, Majumdar M, Tiwari A (2015) CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther 22(11):509–517

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR–Cas9 system in cancer biology. Nat Rev Cancer 15(7):387–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanjana NE (2017) Genome-scale CRISPR pooled screens. Anal Biochem 532:95–99

    Article  CAS  PubMed  Google Scholar 

  • Sekine R, Kawata T, Muramoto T (2018) CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Shabbir MAB, Shabbir MZ, Wu Q, Mahmood S, Sajid A, Maan MK et al (2019) CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob 18(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shademan B, Karamad V, Nourazarian A, Avci CB (2021) CAR T cells: cancer cell surface receptors are the target for cancer therapy. Adv Pharm Bull. https://doi.org/10.34172/apb.2022.051

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  PubMed  Google Scholar 

  • Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 16(5):299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR (2015) Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33(6):661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegal R, Miller KD, Jemal A (2014) Cancer statistics, 2012. Ca Cancer J Clin 64(1):9–29

    Google Scholar 

  • Singh N, Shi J, June CH, Ruella M (2017) Genome-editing technologies in adoptive T cell immunotherapy for cancer. Curr Hematol Malig Rep 12(6):522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulos SN, Moeller S, Jbabdi S, Xu J, Andersson JL, Auerbach EJ et al (2013) Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn Reson Med 70(6):1682–1689

    Article  CAS  PubMed  Google Scholar 

  • Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E et al (2020) CRISPR-engineered T cells in patients with refractory cancer. Science 367:6481

    Article  CAS  Google Scholar 

  • Stolzenburg S, Beltran AS, Swift-Scanlan T, Rivenbark AG, Rashwan R, Blancafort P (2015) Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34(43):5427–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Shrager JB (2016) CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO Mol Med 8(2):83–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14(3):321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z (2019) CRISPR/Cas9–An evolving biological tool kit for cancer biology and oncology. NPJ Precision Oncology 3(1):1–8

    Article  Google Scholar 

  • Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system. Nat Commun 5(1):1–8

    Article  CAS  Google Scholar 

  • Vakulskas CA, Behlke MA (2019) Evaluation and reduction of CRISPR off-target cleavage events. Nucleic Acid Ther 29(4):167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sun W (2017) CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett 385:137–143

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ et al (2015) Identification and characterization of essential genes in the human genome. Science 350(6264):1096–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang L, Xie Y, Wang N, Tang R, Zheng W, Jiang X (2017) Genome editing for cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core–shell nanocarrier. Adv Sci 4(11):1700175

    Article  CAS  Google Scholar 

  • Wang C, Jin H, Gao D, Wang L, Evers B, Xue Z et al (2018) A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res 28(6):690–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C, Wang F, Liu W, Zhao W, Yang Y, Li K et al (2018) CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells. Mol Med Rep 17(2):2901–2906

    CAS  PubMed  Google Scholar 

  • Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B (2019) CRISPR RNA-guided autonomous delivery of Cas9. Nat Struct Mol Biol 26(1):14–24

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Li Z (2020) CRISPR-Cas systems: overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. https://doi.org/10.1016/j.csbj.2020.08.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan M, Li J (2019) The evolving CRISPR technology. Protein Cell 10(11):783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Xu J, Ge S, Lai L (2021) CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front Med. https://doi.org/10.3389/fmed.2021.649896

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F (2018) Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery 4(1):1–12

    Article  CAS  Google Scholar 

  • Yoshiba T, Saga Y, Urabe M, Uchibor R, Matsubara S, Fujiwara H, Mizukami H (2019) CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett 17(2):2197–2206

    CAS  PubMed  Google Scholar 

  • Zaboikin M, Zaboikina T, Freter C, Srinivasakumar N (2017) Non-homologous end joining and homology directed DNA repair frequency of double-stranded breaks introduced by genome editing reagents. PLoS ONE 12(1):e0169931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M (2019) CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 55:106–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chen J, Zhu Z, Zhu Z, Liao X, Wu J et al (2021) CRISPR-Cas13-mediated knockdown of lncRNA-GACAT3 inhibited cell proliferation and motility, and induced apoptosis by increasing p21, Bax, and E-cadherin expression in bladder cancer. Front Mol Biosci 7:433

    Article  Google Scholar 

  • Zhao G, Wang Q, Gu Q, Qiang W, Wei JJ, Dong P et al (2017) Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells. Oncotarget 8(55):94666

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X et al (2018) A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett 431:171–181

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Li C, Tong F, Deng J, Huang G, Sang Y (2021) Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biol Proced Online 23(1):1–13

    Article  Google Scholar 

  • Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y (2014) In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 450(4):1422–1426

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Xiong D, Sun X, Wang J, Hao M, Ding T et al (2012) Signification of hypermethylated in cancer 1 (HIC1) as tumor suppressor gene in tumor progression. Cancer Microenviron 5(3):285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou F, Mao R, Yang L, Lin S, Lei K, Zheng Y et al (2016) Targeted deletion of miR-139-5p activates MAPK, NF-κB and STAT 3 signaling and promotes intestinal inflammation and colorectal cancer. FEBS J 283(8):1438–1452

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There are no financial supports for this work.

Author information

Authors and Affiliations

Authors

Contributions

BS and AN were involved in study design and article writing, SM and AI were involved in article writing and revision, BS and FS performed research, VK, MR, and FS contributed to revising the manuscript content, and AN and BS gave consent for the final version of the manuscript. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Alireza Nourazarian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research Involving Human and Animal Participants

This article contains no studies with human participants or animals performed by the authors.

Consent for Publications

This manuscript has been approved for publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shademan, B., Masjedi, S., Karamad, V. et al. CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges. Biochem Genet 60, 1446–1470 (2022). https://doi.org/10.1007/s10528-022-10193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-022-10193-9

Keywords

Navigation