Skip to main content

Advertisement

Log in

In Silico Analysis of Collagens Missense SNPs and Human Abnormalities

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Collagens are the most abundant proteins in the extra cellular matrix/ECM of human tissues that are encoded by different genes. There are single nucleotide polymorphisms/SNPs which are considered as the most useful biomarkers for some disease diagnosis or prognosis. The aim of this study is screening and identifying the functional missense SNPs of human ECM-collagens and investigating their correlation with human abnormalities. All of the missense SNPs were retrieved from the NCBI SNP database and screened for a global frequency of more than 0.1. Seventy missense SNPs that met the screening criteria were characterized for functional and stability impact using six and three protein analysis tools, respectively. Next, HOPE and geneMANIA analysis tools were used to show the effect of SNPs on three-dimensional structure (3D) and physical interaction of proteins. Results showed that 13 missense SNPs (rs2070739, rs28381984, rs13424243, rs1800517, rs73868680, rs12488457, rs1353613, rs59021909, rs9830253, rs2228547, rs3753841, rs2855430, and rs970547), which are in nine different collagen genes, affect the structure and function of different collagen proteins. Among these polymorphisms, COL4A3-rs13424243 and COL6A6-rs59021909 were predicted as the most effective ones. On the other hand, designed mutated and native 3D of rs13424243 variant illustrated that it can disturb the protein motifs. Also, geneMANIA predicted that COL4A3 and COL6A6 are interacting with some proteins including: DDR1, COL6A1, COL11A2 and so on. Based on our findings, ECM-collagens functional SNPs are important and may be considered as a risk factor or molecular marker for human disorders in the future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76(1):7–20

    Google Scholar 

  • Bächinger HP, Mizuno K, Vranka JA, Boudko SP (2010) Collagen formation and structure. Comprehensive natural products II: chemistry and biology. Elsevier Ltd, Amsterdam

    Google Scholar 

  • Baumert P, G-REX Consortium, Stewart CE, Lake MJ, Drust B, Erskine RM (2018) Variations of collagen-encoding genes are associated with exercise-induced muscle damage. Physiol Genomics 50(9):691–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, Cousin P, Sutphin JE, Noble B, Batterbury M, Kielty C, Hackett A (2001) Missense mutations in COL8A2, the gene encoding the α2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet 10(21):2415–2423

    Article  CAS  PubMed  Google Scholar 

  • Boffa JJ, Tharaux PL, Placier S, Ardaillou R, Dussaule JC, Chatziantoniou C (1999) Angiotensin II activates collagen type I gene in the renal vasculature of transgenic mice during inhibition of nitric oxide synthesis: evidence for an endothelin-mediated mechanism. Circulation 100(18):1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2. 0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33(suppl-2):W306–W310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22(22):2729–2734

    Article  CAS  PubMed  Google Scholar 

  • Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R (2013) WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics 14(3):1–7

    Google Scholar 

  • Cescon M, Gattazzo F, Chen P, Bonaldo P (2015) Collagen VI at a glance. J Cell Sci 128(19):3525–3531

    CAS  PubMed  Google Scholar 

  • Chen CW, Lin J, Chu YW (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinform 14(Suppl 2):S5

    Google Scholar 

  • Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62(4):1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Chiquet M, Birk DE, Bönnemann CG, Koch M (2014) Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. Int J Biochem Cell Biol 53:51–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HJ, Uitto J (2010) Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol Clin 28(1):93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David Ho KW, Wallace MR, Sibille KT, Bartley EJ, Cruz-Almeida Y, Glover TL, King CD, Goodin BR, Addison A, Edberg JC, Herbert MS (2017) Single nucleotide polymorphism in the COL11A2 gene associated with lowered heat pain sensitivity in knee osteoarthritis. Mol Pain. https://doi.org/10.1177/1744806917724259

    Article  PubMed Central  Google Scholar 

  • Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231

    Article  PubMed  CAS  Google Scholar 

  • Dorison A, Dussaule JC, Chatziantoniou C (2017) The role of discoidin domain receptor 1 in inflammation, fibrosis and renal disease. Nephron 137(3):212–220

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Liu G, Sun Y, Wu J, Xiong Z, Jin T, Chen M (2020) Collagen type VI α5 gene variations may predict the risk of lung cancer development in Chinese Han population. Sci Rep 10(1):1–9

    Article  CAS  Google Scholar 

  • Flamant M, Placier S, Rodenas A, Curat CA, Vogel WF, Chatziantoniou C, Dussaule JC (2006) Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J Am Soc Nephrol 17(12):3374–3381

    Article  CAS  PubMed  Google Scholar 

  • Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris Q (2018) GeneMANIA update 2018. Nucleic Acids Res 46(W1):W60–W64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fratzl P (2008) Collagen: structure and mechanics. Springer Science & Business Media, Boston

    Book  Google Scholar 

  • Gelse K, Pöschl E, Aigner T (2003) Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  CAS  PubMed  Google Scholar 

  • Gerecke DR, Meng X, Liu B, Birk DE (2003) Complete primary structure and genomic organization of the mouse Col14a1 gene. Matrix Biol 22(3):209–216

    Article  CAS  PubMed  Google Scholar 

  • Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278(3):1998–2007

    Article  CAS  PubMed  Google Scholar 

  • Gudmann NS, Karsdal MA (2016) Type X collagen. Biochemistry of collagens, laminins and elastin. Academic Press, Cambridge, pp 73–76

    Chapter  Google Scholar 

  • Heo WI, Park KY, Jin T, Lee MK, Kim M, Choi EH, Kim HS, Bae JM, Moon NJ, Seo SJ (2017) Identification of novel candidate variants including COL6A6 polymorphisms in early-onset atopic dermatitis using whole-exome sequencing. BMC Med Genet 18(1):1–9

    Article  Google Scholar 

  • Jamieson SE, de Roubaix LA, Cortina-Borja M, Tan HK, Mui EJ, Cordell HJ, Kirisits MJ, Miller EN, Peacock CS, Hargrave AC, Coyne JJ (2008) Genetic and epigenetic factors at COL2A1 and ABCA4 influence clinical outcome in congenital toxoplasmosis. PLoS ONE 3(6):e2285. https://doi.org/10.1371/journal.pone.0002285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juskaite V, Corcoran DS, Leitinger B (2017) Collagen induces activation of DDR1 through lateral dimer association and phosphorylation between dimers. Elife 6:e25716. https://doi.org/10.7554/eLife.25716

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur J, Reinhardt DP (2015) Extracellular matrix (ECM) molecules. Stem cell biology and tissue engineering in dental sciences. Academic Press, Cambridge, pp 25–45

    Chapter  Google Scholar 

  • Kaynak M, Nijman F, van Meurs J, Reijman M, Meuffels DE (2017) Genetic variants and anterior cruciate ligament rupture: a systematic review. Sports Med 47(8):1637–1650

    Article  PubMed  PubMed Central  Google Scholar 

  • Keene DR, Engvall E, Glanville RW (1988) Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol 107(5):1995–2006

    Article  CAS  PubMed  Google Scholar 

  • Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71(5):357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittelberger R, Davis PF, Flynn DW, Greenhill NS (1990) Distribution of type VIII collagen in tissues: an immunohistochemical study. Connect Tissue Res 24(3–4):303–318

    Article  CAS  PubMed  Google Scholar 

  • Kruegel J, Rubel D, Gross O (2013) Alport syndrome—insights from basic and clinical research. Nat Rev Nephrol 9(3):170–178

    Article  CAS  PubMed  Google Scholar 

  • Kuang X, Sun L, Wu Y, Huang W (2020) A novel missense mutation of COL4A5 gene alter collagen IV α5 chain to cause X-linked Alport syndrome in a Chinese family. Transl Pediatr 9(5):587–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Kusindarta DL, Wihadmadyatami H (2018) The role of extracellular matrix in tissue regeneration. Tissue Regen 75728:6

    Google Scholar 

  • Latvanlehto A, Fox MA, Sormunen R, Tu H, Oikarainen T, Koski A, Naumenko N, Shakirzyanova A, Kallio M, Ilves M, Giniatullin R (2010) Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci 30(37):12230–12241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie GW, Leblond CP, Inoue S, Martin GR, Chung A (1984) Fine structure of the glomerular basement membrane and immunolocalization of five basement membrane components to the lamina densa (basal lamina) and its extensions in both glomeruli and tubules of the rat kidney. Am J Anat 169(4):463–481

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Yang PW, Chiang TH, Huang YC, Hsieh CY (2014) The genetic polymorphisms of ATG5 and COL4A3 are associated with the prognosis of patients with esophageal squamous cell carcinoma. Am Assoc Can Res. https://doi.org/10.1158/1538-7445.AM2014-2859

    Article  Google Scholar 

  • Leeming DJ, Karsdal MA (2016) Type V collagen. Biochemistry of collagens, laminins and elastin. Academic Press, Cambridge, pp 43–48

    Chapter  Google Scholar 

  • Li L, Sun Z, Chen J, Zhang Y, Shi H, Zhu L (2020) Genetic polymorphisms in collagen-related genes are associated with pelvic organ prolapse. Menopause 27(2):223–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C, Wang P, Liu X, Yang C, Ma Y, Yong L, Zhu B, Liu X, Liu Z (2018) Whole-genome sequencing reveals novel genes in ossification of the posterior longitudinal ligament of the thoracic spine in the Chinese population. J Orthop Surg Res 13(1):1–8

    Article  Google Scholar 

  • Longo I, Porcedda P, Mari F, Giachino D, Meloni I, Deplano C, Brusco A, Bosio M, Massella L, Lavoratti G, Roccatello D (2002) COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int 61(6):1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Ishidou Y, Koga H, Taketomi E, Ikari K, Komiya S, Takeda J, Sakou T, Inoue I (2001) Functional impact of human collagen α2 (XI) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 16(5):948–957

    Article  CAS  PubMed  Google Scholar 

  • Manon-Jensen T, Karsdal MA (2016) Type XII collagen. Biochemistry of collagens, laminins and elastin. Academic Press, Cambridge, pp 81–85

    Chapter  Google Scholar 

  • Matsunaga S, Sakou T (2012) Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine 37(5):E309–E314

    Article  PubMed  Google Scholar 

  • Mio F, Chiba K, Hirose Y, Kawaguchi Y, Mikami Y, Oya T, Mori M, Kamata M, Matsumoto M, Ozaki K, Tanaka T (2007) A functional polymorphism in COL11A1, which encodes the α1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am J Hum Genet 81(6):1271–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll S, Desmoulière A, Moeller MJ, Pache JC, Badi L, Arcadu F, Richter H, Satz A, Uhles S, Cavalli A, Drawnel F (2019) DDR1 role in fibrosis and its pharmacological targeting. Biochim Biophys Acta 1866(11):118474. https://doi.org/10.1016/j.bbamcr.2019.04.004

    Article  CAS  Google Scholar 

  • Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta Mol Basis Dis 1832(7):866–875

    Article  CAS  Google Scholar 

  • Murdoch AD, Hardingham TE, Eyre DR, Fernandes RJ (2016) The development of a mature collagen network in cartilage from human bone marrow stem cells in Transwell culture. Matrix Biol 50:16–26

    Article  CAS  PubMed  Google Scholar 

  • Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20(1):33–43

    Article  CAS  PubMed  Google Scholar 

  • Nimni ME (1980) The molecular organization of collagen and its role in determining the biophysical properties of the connective tissues. Biorheology 17(1–2):51–82

    Article  CAS  PubMed  Google Scholar 

  • Pan TC, Zhang RZ, Pericak-Vance MA, Tandan R, Fries T, Stajich JM, Viles K, Vance JM, Chu ML, Speer MC (1998) Missense mutation in a von willebrand factor type A domain of the α3 (VI) collagen gene (COL6A3) in a family with bethlem myopathy. Hum Mol Genet 7(5):807–812

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Choe BK, Kim SK, Park HK, Kim JW, Chung JH, Hong IK, Chung DH, Kwon KH (2011) Association between collagen type XI α1 gene polymorphisms and papillary thyroid cancer in a Korean population. Exp Ther Med 2(6):1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE (2002) Collagen: an overview. Implant Dent 11(3):280–285

    Article  PubMed  Google Scholar 

  • Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80(5):389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39(17):e118–e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3(1):a004978

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieder MJ, Taylor SL, Clark AG, Nickerson DA (1999) Sequence variation in the human angiotensin converting enzyme. Nat Genet 22(1):59–62

    Article  CAS  PubMed  Google Scholar 

  • Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140

    Article  CAS  PubMed  Google Scholar 

  • Saravani R, Hasanian-Langroudi F, Validad MH, Yari D, Bahari G, Faramarzi M, Khateri M, Bahadoram S (2015) Evaluation of possible relationship between COL4A4 gene polymorphisms and risk of keratoconus. Cornea 34(3):318–322

    Article  PubMed  Google Scholar 

  • Shen G (2005) The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res 8(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Sheu JJ, Lin YJ, Chang JS, Wan L, Chen SY, Huang YC, Chan C, Chiu IW, Tsai FJ (2010) Association of COL11A2 polymorphism with susceptibility to Kawasaki disease and development of coronary artery lesions. Int J Immunogenet 37(6):487–492

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava A, Radziejewski C, Campbell E, Kovac L, McGlynn M, Ryan TE, Davis S, Goldfarb MP, Glass DJ, Lemke G, Yancopoulos GD (1997) An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Siebuhr AS, Karsdal MA (2016) Type XIII collagen. Biochemistry of collagens, laminins and elastin. Academic Press, Cambridge, pp 87–91

    Chapter  Google Scholar 

  • Song Y, Du Z, Ren M, Yang Q, Wang Q, Chen G, Zhao H, Li Z, Wang J, Zhang G (2017) Association of gene variants of transcription factors PPARγ, RUNX2, Osterix genes and COL2A1, IGFBP3 genes with the development of osteonecrosis of the femoral head in Chinese population. Bone 101:104–112

    Article  CAS  PubMed  Google Scholar 

  • Štabuc-Šilih M, Ravnik-Glavač M, Glavač D, Hawlina M, Stražišar M (2009) Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. Mol vis 15:2848–2860

    PubMed  PubMed Central  Google Scholar 

  • Sukhumsirichart W (2018) Polymorphisms. Genetic diversity and disease susceptibility. IntechOpen, London

    Google Scholar 

  • Tai Z, Huang L, Lu F, Shi Y, Ma S, Cheng J, Lin H, Liu X, Li Y, Yang Z (2017) Association study of candidate genes for susceptibility to Kashin-Beck disease in a Tibetan population. BMC Med Genet 18(1):1–8

    Article  CAS  Google Scholar 

  • Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, Furukawa KI, Yoshida K, Ikeda T, Ikegawa S, Hunt SC, Takeda J (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 73(4):812–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5(13):2814–2823

    Article  PubMed  Google Scholar 

  • Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform 11(1):1–10

    Article  CAS  Google Scholar 

  • Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Li S, Gao Y, Tang L, Cao W, Sun X (2019) COL11A1 polymorphisms are associated with primary angle-closure glaucoma severity. J Ophthalmol. https://doi.org/10.1155/2019/2604386

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li W, Wei K, Xiao R, Wang J, Ma H, Qin L, Shao W, Li C (2018) Missense mutations in COL4A5 or COL4A6 genes may cause cerebrovascular fibromuscular dysplasia: case report and literature review. Medicine 97(30):e11538. https://doi.org/10.1097/MD.0000000000011538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DD, Gao FJ, Hu FY, Li JK, Zhang SH, Xu P, Chang Q, Jiang R, Wu JH (2020) Next-generation sequencing-aided precise diagnosis of Stickler syndrome type I. Acta Ophthalmol 98(4):e440–e446

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13(10):3369–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue F, Rabie ABM, Luo G (2014) Analysis of the association of COL2A1 and IGF-1 with mandibular prognathism in a Chinese population. Orthod Craniofac Res 17(3):144–149

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Song Y, Chen Z, Yuan X, Chen X, Ding G, Guan Y, McGrath M, Song C, Tong T, Wang H (2019) A nonsense mutation in COL4A4 gene causing isolated hematuria in either heterozygous or homozygous state. Front Genet 10:628. https://doi.org/10.3389/fgene.2019.00628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Pei F, Kang P (2011) Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition 27(11–12):1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Zenteno JC, Crespí J, Buentello-Volante B, Buil JA, Bassaganyas F, Vela-Segarra JI, Diaz-Cascajosa J, Marieges MT (2014) Next generation sequencing uncovers a missense mutation in COL4A1 as the cause of familial retinal arteriolar tortuosity. Graefes Arch Clin Exp Ophthalmol 252(11):1789–1794

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen Q (2000) Changes of matrilin forms during endochondral ossification: molecular basis of oligomeric assembly. J Biol Chem 275(42):32628–32634

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all the colleagues who collaborated with us in this study.

Author information

Authors and Affiliations

Authors

Contributions

We confirmed that, all authors were involved in writing this article. AHC, as a supervisor of MSc candidate, in the conceptualization, methodology, software; AK, as a MSc candidate, in the data curation, writing—original draft preparation; MH, as a PhD candidate, in the data curation and data analysis; VA, as an Associate Professor of Orthodontics, in data and in silico analysis.

Corresponding author

Correspondence to Abasalt Hosseinzadeh Colagar.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Consent to Participate

As corresponding author, I confirm that the manuscript has been read and approved for submission by all the named authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmari, A., Heydari, M., Hosseinzadeh Colagar, A. et al. In Silico Analysis of Collagens Missense SNPs and Human Abnormalities. Biochem Genet 60, 1630–1656 (2022). https://doi.org/10.1007/s10528-021-10172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10172-6

Keywords

Navigation