Skip to main content
Log in

Bi-parentally Inherited Genetic Evidence for Male-Biased Dispersal in Common Moorhen (Gallinula chloropus)

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Dispersal is a life history trait that has relevant effect on both the dynamics and the genetics of species and sex-biased dispersal depends on how resource competition affects each of the sexes. In this study, a total of 210 blood samples including 121 Common Moorhen (Gallinula chloropus) females and 89 males were collected from 18 diverse areas during the breeding season. Based on 8 microsatellite markers analyses, we found that the most genetic diversities from female populations were higher than those from the males, where only 2 male individuals were identified as the long-distance dispersal. Analyses of sex-biased dispersal conducted over all sampling sites indicated that mAI (female mAI = 0.195, male mAI = − 0.265, P = 0.01), FST (female FST = 0.045, male FST = 0.026, P = 0.020), and r (female r = 0.118, male r = 0.064, P = 0.010) in females were all significantly higher than those in males at the 0.05 level, which suggested a male-biased dispersal pattern in this species. Our Mantel test results suggested a significant isolation-by-distance pattern for females but not for males, which corresponded to the more frequent dispersal and gene flow in males than in females. This dispersal pattern could be explained by the special life history trait and mating system that Common Moorhen pair formation occurs before they leave the flock in the spring to establish territories and its females initiate courtship more frequently than males and compete with each other to pair with small males with large fat reserves. The philopatric female could benefit most from knowledge of a particular area because they may win more intrasexual competitions in the breeding season and be able to produce more offspring if they are familiar with the local resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aars J, Ims RA (2000) Population dynamic and genetic consequences of spatial density-dependent dispersal in patchy populations. Am Nat 155(2):252–265

    Article  PubMed  Google Scholar 

  • Baden R, Rockstroh JK, Buti M (2014) Natural history and management of hepatitis C: does sex play a role? J Infect Dis 209(Suppl 3):8

    Article  CAS  Google Scholar 

  • Bani L, Orioli V, Pisa G, Mortelliti A (2017) Population genetic structure and sex-biased dispersal of the hazel dormouse (Muscardinus avellanarius) in a continuous and in a fragmented landscape in central Italy. Conserv Genet 18(2):261–274

    Article  Google Scholar 

  • Bannor BK, Kiviat E (2002) Common Moorhen (Gallinula chloropus). Account 685. In: Poole A, Gill F (eds) The Birds of North America. The Birds of North America, Inc., Philadelphia

    Google Scholar 

  • Clarke HD, Stewart MC, Whiteley P (1997) Tory trends: party identification and the dynamics of conservative support since 1992. Br J Polit Sci 27:299–319

    Article  Google Scholar 

  • Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153(4):1989–2000

    PubMed  PubMed Central  CAS  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the softwarestructure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2006) Arlequin ver 3.1: an integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Laboratory, University of Bern, Bern

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gautschi B, Arter MK, Husi R, Wettstein W, Schmid B (2002) Isolation and characterization of microsatellite loci in the globally endangered Corncrake, Crex crex Linné. Conserv Genet 3:451–453

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT (version 2.9.3): a program to estimate and test gene diversities and fixation indices. http://www.unil.ch/izea/softwares/fstat.html

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Gregory SM, Quinn JS (2006) Microsatellite isolation from four avian species comparing two isolation techniques. Mol Ecol Notes 6:87–89

    Article  CAS  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJ (1998) A DNA test to sex most birds. Mol Ecol 7:1071

    Article  PubMed  CAS  Google Scholar 

  • Grueber CE, King TM, Waters JM, Jamieson IG (2008) Isolation and characterization of microsatellite loci from the endangered New Zealand takahe (Gruiformes; Rallidae; Porphyrio hochstetteri). Mol Ecol Resour 8(4):884–886

    Article  PubMed  CAS  Google Scholar 

  • Harris RE, Al E (2009) Recent advances in diagnostic psychological testing; a critical summary. J Am Med Assoc 145(8):125

    Google Scholar 

  • Illes AE (2015) Context of female bias in song repertoire size, singing effort, and singing independence in a cooperatively breeding songbird. Behav Ecol Sociobiol 69(1):139–150

    Article  Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Resour 5:187–189

    Article  CAS  Google Scholar 

  • Lawson Handley LJ, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578

    Article  PubMed  CAS  Google Scholar 

  • Loyau A, Schmeller DS (2012) Mixed reproductive strategies of the Common moorhen on a microscale as revealed by genetic data. Comptes Rendus Biol 35:673–679

    Article  Google Scholar 

  • Mccoy JJ (1963) The fossil avifauna of Itchtucknee River, Florida. Auk 80:335–351

    Article  Google Scholar 

  • Miller MP, Mullins TD, Haig SM, Takano LL, Garcia KS (2015) Genetic structure, diversity, and interisland dispersal in the endangered Mariana Common Moorhen (Gallinula chloropus guami). Condor 117:660–669

    Article  Google Scholar 

  • Nagy M, Heckel G, Voigt CC, Mayer F (2007) Female-biased dispersal and patrilocal kin groups in a mammal with resource-defence polygyny. Proc R Soc Lond B 274:3019

    Article  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Petit S, Boursault A, Guilloux ML, Munier-Jolain N, Reboud X (2011) Weeds in agricultural landscapes. A review. Agron Sustain Dev 31:309–317

    Article  Google Scholar 

  • Petrie M (1983) Female moorhens compete for small fat males. Science 220:413

    Article  PubMed  CAS  Google Scholar 

  • Petrie G (1986) The depiction of the 1950s in recent hungarian cinema. J Eur Stud 16:29–44

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prugnolle F, De Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    Article  PubMed  CAS  Google Scholar 

  • Rousset H (2008) L’école du diagnostic. Rev Méd Interne 29:613–614

    Article  PubMed  CAS  Google Scholar 

  • Ruan LZ, Zhang LX, Wen LY, Sun QW, Liu NF (2005) Phylogeny and molecular evolution of Tetraogallus in China. Biochem Genet 43:507–518

    Article  CAS  Google Scholar 

  • Ruan LZ, Xu W, Han YQ, Zhu CY, Guan BC, Xu CX, Gao B, Zhao DQ (2018) Gene flow from multiple sources maintains high genetic diversity and stable population history of Common Moorhen Gallinula chloropus in China. Ibis. https://doi.org/10.1111/ibi.12579

    Article  Google Scholar 

  • Sidle JG (1994) Migratory shore and upland game bird management in North America by Thomas C. Tacha; Clait E. Braun. J Wildl Manage 59:896

    Article  Google Scholar 

  • Steinfartz S (2009) Die Amphibien und Reptilien der Südwest-Türkei. Amphib-Reptil 30:446

    Article  Google Scholar 

  • Takano LL, Haig SM (2004) Seasonal movement and home range of the mariana common moorhen. Condor 106:652–663

    Article  Google Scholar 

  • Taylor B, van Perlo B (1998) Rails: a guide to the Rails, Crakes, Gallinules, and Coots of the world. Pica Press, New Haven, pp 492–503

    Google Scholar 

  • Van Oosterhout C, Van Heuven MK, Brakefield PM (2004) On the neutrality of molecular genetic markers: pedigree analysis of genetic variation in fragmented populations. Mol Ecol 13:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Wallau GL, Della-Flora F, Bueno AS, Corso J, Ortiz MF, Cáceres NC (2010) Behaviour of the Common Moorhen in Rio Grande do Sul, Brazil. Acta Ethol 13:127–135

    Article  Google Scholar 

  • Wang QS, Ma M, Gao RY (2006) Family Rallidae. In: Fauna Sinica, aves. Volume 5. Gruiformes, Charadriiformes and Lariformes. Science Press, Beijing, pp 57–128 (in Chinese)

  • Worthington V (1998) Effect of agricultural methods on nutritional quality: a comparison of organic with conventional crops. Altern Ther Health Med 4(1):58

    PubMed  CAS  Google Scholar 

  • Wrangham RW (1980) An ecological model of female-bonded primate groups. Behaviour 75:262–300

    Article  Google Scholar 

  • Xu CF, Lewis K, Cantone KL, Khan P, Donnelly C, White N, Crocker N, Boyd PR, Zaykin DV, Purvis IJ (2002) Effectiveness of computational methods in haplotype prediction. Hum Genet 110:148

    Article  PubMed  CAS  Google Scholar 

  • Zhu CY, Chen P, Han YQ, Ruan LZ (2018) Low genetic diversity and low gene flow corresponded to a weak genetic structure of ruddy-breasted crake (Porzana fusca) in China. Biochem Genet. https://doi.org/10.1007/s10528-018-9862-9

    Article  PubMed  Google Scholar 

  • Zink R, Barrowclough G (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (NSFC Nos. 31260510 and 30960052) and Water Resources Department of Jiangxi Province Science and Technological Project (No. KT201537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzhang Ruan.

Ethics declarations

Ethical statement

The sample collection in this experiment was performed under the national ethical guidelines (Regulations for Administration of Affairs Concerning Experimental Animals, China, 1988) for animal husbandry and humane treatment strictly.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Han, Y., Zhu, C. et al. Bi-parentally Inherited Genetic Evidence for Male-Biased Dispersal in Common Moorhen (Gallinula chloropus). Biochem Genet 57, 46–55 (2019). https://doi.org/10.1007/s10528-018-9873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-018-9873-6

Keywords

Navigation