Skip to main content
Log in

Genetic Testing of Non-familial Deaf Patients for CIB2 and GJB2 Mutations: Phenotype and Genetic Counselling

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

CIB2 and GJB2 genes variants contribute significantly in familial cases of prelingual recessive hearing loss (HL). This study was aimed to determine the CIB2 and GJB2 variants and associated phenotype in 150 non-familial individuals with HL. After getting informed consent, 150 non-familial deaf patients were enrolled and blood samples were obtained for DNA extraction. Pure tone air conduction audiometry was performed. Coding exons of CIB2 and GJB2 genes were Sanger sequenced. A tetra primer ARMS assay was developed for recurrent CIB2 variant. Four bi-allelic GJB2 variants, c.71G>A p.(Trp24*), c.231G>A p.(Trp77*), c.235delC p.(Leu79Cysfs3*) and c.35delG p.(Gly11Leufs24*), were found in nine hearing impaired individuals. We also found four homozygotes and five carriers of c.380G>A p. (Arg127His) variant of controversial clinical significance. CIB2 sequencing revealed single recurrent variant c.272T>C p. (Phe91Ser) segregating with HL in ten individuals. Among our patients, c.71G>A (p.Trp24*) was the most common variant, accounted for 45% of GJB2 variants. Two known GJB2 variants, c.235delC p. (Leu79Cysfs3*) and c.310del14 p. (Lys105Argfs2*), are reported here for the first time in Pakistani population. Our data further support the benign nature of c.380G>A p. (Arg127His) variant. For CIB2, c.272T>C p. (Phe91Ser) is the second common cause of HL among our sporadic cases. Phenotypically, in our patients, individuals homozygous for GJB2 variants had profound HL, whereas CIB2 homozygotes had severe to profound prelingual HL. Our results suggest that GJB2 and CIB2 are common cause of HL in different Pakistani ethnicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anwar S, Riazuddin S, Ahmed ZM et al (2009) SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred’s syndrome in Pakistanis. J Hum Genet 54(5):266–270

    Article  CAS  PubMed  Google Scholar 

  • Bazazzadegan N, Nikzat N, Fattahi Z et al (2012) The spectrum of GJB2 mutations in the Iranian population with non-syndromic hearing loss—a twelve year study. Int J Pediatr Otorhinolaryngol 76(8):1164–1174

    Article  PubMed  Google Scholar 

  • Bukhari I, Mujtaba G, Naz S (2013) Contribution of GJB2 mutations to hearing loss in the Hazara Division of Pakistan. Biochem Genet 51(7–8):524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabanillas Farpon R, Cadinanos Banales J (2012) Hereditary hearing loss: genetic counselling. Acta Otorrinolaringol Esp 63(3):218–229

    Article  PubMed  Google Scholar 

  • Camp GV, Smith R (2013) Hereditary hearing loss home page

  • Chan DK, Chang KW (2014) GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 124(2):E34–53

    Article  PubMed  Google Scholar 

  • Chishti MS, Bhatti A, Tamim S et al (2008) Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J Hum Genet 53(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Choi BY, Ahmed ZM, Riazuddin S et al (2009) Identities and frequencies of mutations of the otoferlin gene (OTOF) causing DFNB9 deafness in Pakistan. Clin Genet 75(3):237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denoyelle F, Weil D, Maw MA et al (1997) Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6(12):2173–2177

    Article  CAS  PubMed  Google Scholar 

  • Grimberg J, Nawoschik S, Belluscio L et al (1989) A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17(20):8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurtler N, Kim Y, Mhatre A et al (2003) GJB2 mutations in the Swiss hearing impaired. Ear Hear 24(5):440–447

    Article  PubMed  Google Scholar 

  • Kalay E, Caylan R, Kremer H et al (2005) GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations. Hear Res 203(1–2):88–93

    Article  CAS  PubMed  Google Scholar 

  • Kelley PM, Harris DJ, Comer BC et al (1998) Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 62(4):792–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HR, Oh SK, Lee ES et al (2016) The pathological effects of connexin 26 variants related to hearing loss by in silico and in vitro analysis. Hum Genet 135(3):287–298

    Article  CAS  PubMed  Google Scholar 

  • Kitajiri SI, McNamara R, Makishima T et al (2007) Identities, frequencies and origins of TMC1 mutations causing DFNB7/B11 deafness in Pakistan. Clin Genet 72(6):546–550

    Article  PubMed  Google Scholar 

  • Kudo T, Ikeda K, Kure S et al (2000) Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 90(2):141–145

    Article  CAS  PubMed  Google Scholar 

  • Kurima K, Peters LM, Yang Y et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30(3):277–284

    Article  PubMed  Google Scholar 

  • Lerer I, Sagi M, Malamud E et al (2000) Contribution of connexin 26 mutations to nonsyndromic deafness in Ashkenazi patients and the variable phenotypic effect of the mutation 167delT. Am J Med Genet 95(1):53–56

    Article  CAS  PubMed  Google Scholar 

  • Liburd N, Ghosh M, Riazuddin S et al (2001) Novel mutations of MYO15A associated with profound deafness in consanguineous families and moderately severe hearing loss in a patient with Smith-Magenis syndrome. Hum Genet 109(5):535–541

    Article  CAS  PubMed  Google Scholar 

  • Lucotte G, Dieterlen F (2005) The 35delG mutation in the connexin 26 gene (GJB2) associated with congenital deafness: European carrier frequencies and evidence for its origin in ancient Greece. Genet Test 9(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Minami SB, Mutai H, Nakano A et al (2013) GJB2-associated hearing loss undetected by hearing screening of newborns. Gene 532(1):41–45

    Article  CAS  PubMed  Google Scholar 

  • Minarik G, Ferakova E, Ficek A et al (2005) GJB2 gene mutations in Slovak hearing-impaired patients of Caucasian origin: spectrum, frequencies and SNP analysis. Clin Genet 68(6):554–557

    Article  CAS  PubMed  Google Scholar 

  • Minarik G, Tretinarova D, Szemes T et al (2012) Prevalence of DFNB1 mutations in Slovak patients with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 76(3):400–403

    Article  PubMed  Google Scholar 

  • Morell RJ, Kim HJ, Hood LJ et al (1998) Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 339(21):1500–1505

    Article  CAS  PubMed  Google Scholar 

  • Nal N, Ahmed ZM, Erkal E et al (2007) Mutational spectrum of MYO15A: the large N-terminal extension of myosin XVA is required for hearing. Hum Mutat 28(10):1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Padma G, Ramchander PV, Nandur UV et al (2009) GJB2 and GJB6 gene mutations found in Indian probands with congenital hearing impairment. J Genet 88(3):267–272

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Giese AP, Grossheim JM et al (2015) A novel C-terminal CIB2 (calcium and integrin binding protein 2) mutation associated with non-syndromic hearing loss in a Hispanic family. PLoS ONE 10(10):e0133082

    Article  PubMed  PubMed Central  Google Scholar 

  • Putcha GV, Bejjani BA, Bleoo S et al (2007) A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genet Med 9(7):413–426

    Article  CAS  PubMed  Google Scholar 

  • RamShankar M, Girirajan S, Dagan O et al (2003) Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J Med Genet 40(5):e68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riazuddin S, Ahmed ZM, Fanning AS et al (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79(6):1040–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riazuddin S, Belyantseva IA, Giese AP et al (2012) Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet 44(11):1265–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salman M, Bashir R, Imtiaz A et al (2015) Mutations of GJB2 encoding connexin 26 contribute to non-syndromic moderate and severe hearing loss in Pakistan. Eur Arch Otorhinolaryngol 272(8):2071–2075

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos RL, Wajid M, Pham TL et al (2005) Low prevalence of Connexin 26 (GJB2) variants in Pakistani families with autosomal recessive non-syndromic hearing impairment. Clin Genet 67(1):61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz JM, Khan SN, Ahmed ZM et al (2009) Noncoding mutations of HGF are associated with nonsyndromic hearing loss, DFNB39. Am J Hum Genet 85(1):25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seco CZ, Giese AP, Shafique S et al (2016) Novel and recurrent CIB2 variants, associated with nonsyndromic deafness, do not affect calcium buffering and localization in hair cells. Eur J Hum Genet 24(4):542–549

    Article  CAS  PubMed  Google Scholar 

  • Shafique S, Siddiqi S, Schraders M et al (2014) Genetic spectrum of autosomal recessive non-syndromic hearing loss in Pakistani families. PLoS ONE 9(6):e100146

    Article  PubMed  PubMed Central  Google Scholar 

  • Snoeckx RL, Huygen PL, Feldmann D et al (2005) GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 77(6):945–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekin D, Yan D, Bademci G et al (2016) A next-generation sequencing gene panel (MiamiOtoGenes) for comprehensive analysis of deafness genes. Hear Res 333:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada K, Nishio S, Usami S et al (2010) A large cohort study of GJB2 mutations in Japanese hearing loss patients. Clin Genet 78(5):464–470

    Article  CAS  PubMed  Google Scholar 

  • Usami S, Wagatsuma M, Fukuoka H et al (2008) The responsible genes in Japanese deafness patients and clinical application using Invader assay. Acta Otolaryngol 128(4):446–454

    Article  CAS  PubMed  Google Scholar 

  • Vivero RJ, Fan K, Angeli S et al (2010) Cochlear implantation in common forms of genetic deafness. Int J Pediatr Otorhinolaryngol 74(10):1107–1112

    Article  PubMed  PubMed Central  Google Scholar 

  • Waryah AM, Ahmed ZM, Bhinder MA et al (2011) Molecular and clinical studies of X-linked deafness among Pakistani families. J Hum Genet 56(7):534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CM, Ko HC, Tsou YT et al (2015) Long-term cochlear implant outcomes in children with GJB2 and SLC26A4 mutations. PLoS ONE 10(9):e0138575

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin F, Yuan Y, Deng X et al (2013) Genetic mutations in nonsyndromic deafness patients of Chinese minority and Han ethnicities in Yunnan, China. J Transl Med 11:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, You Y, Huang D et al (2009) Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. J Transl Med 7:79

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all patients and their parents for participation in the study. The authors are grateful and indebted to Prof. Zubair M. Ahmed for review of the manuscript. This work was funded by LUMHS Intramural Funds to AMW. This study was approved by the Institutional Ethical Review Committee at Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Waryah.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, H., Waryah, A.M., Narsani, A.K. et al. Genetic Testing of Non-familial Deaf Patients for CIB2 and GJB2 Mutations: Phenotype and Genetic Counselling. Biochem Genet 55, 410–420 (2017). https://doi.org/10.1007/s10528-017-9828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-017-9828-3

Keywords

Navigation