Skip to main content
Log in

Molecular Evaluation of Genetic Diversity in Wild-Type Mastic Tree (Pistacia lentiscus L.)

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

In this study, the patterns of genetic variation and phylogenetic relationships of mastic tree (Pistacia lentiscus L.) genotypes including 12 males and 12 females were evaluated using SSR, RAPD, ISSR, and ITS markers yielding 40, 703, 929 alleles, and 260–292 base pairs for ITS1 region, respectively. The average number of alleles produced from SSR, RAPD, and ISSR primers were 5.7, 14, and 18, respectively. The grouping pattern obtained from Bayesian clustering method based on each marker dataset was produced. Principal component analyses (PCA) of molecular data was investigated and neighbor joining dendrograms were subsequently created. Overall, the results indicated that ISSR and RAPD markers were the most powerful to differentiate the genotypes in comparison with other types of molecular markers used in this study. The ISSR results indicated that male and female genotypes were distinctly separated from each other. In this frame, M9 (Alaçatı) and M10 (Mesta Sakız Adası-Chios) were the closest genotypes and while F11 (Seferihisar) and F12 (Bornova/Gökdere) genotypes fall into same cluster and showing closer genetic relation. The RAPD pattern indicated that M8 (Urla) and M10 (Mesta Sakız Adası-Chios), and F10 (Mesta Sakız Adası-Chios) and F11 (Seferihisar) genotypes were the closest male and female genotypes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad R, Ferguson L, Southwick SM (2003a) Identification of pistachio (Pistacia vera L.) nuts with microsatellite markers. J Am Soc Horticult Sci 128:898–903

    CAS  Google Scholar 

  • Ahmad R, Struss D, Southwick SM (2003b) Development and characterization of microsatellite markers in citrus. J Am Soc Hortic Sci 128:584–590

    CAS  Google Scholar 

  • Ahmad R, Ferguson L, Southwick SM (2005) Molecular marker analyses of pistachio rootstocks by simple sequence repeats and sequence-related amplified polymorphisms. J Hortic Sci Biol 80:382–386

    CAS  Google Scholar 

  • Albaladejo RG, Sebastiani F, Aparicio A, Buonamici A, González-Martínez SC, Vendramin GG (2008) Development and characterization of eight polymorphic microsatellite loci from Pistacia lentiscus L. (Anacardiaceae). Mol Ecol Resour 9:904–906

    Article  Google Scholar 

  • Al-Saghir MG, Porter DM (2006) Random amplified polymorphic DNA (RAPD) study of Pistacia species (Anacardiaceae). Asian J Plant Sci 5:1002–1006

    Article  CAS  Google Scholar 

  • Baghizadeh A, Noroozi S, Javaran MJ (2010) Study on genetic diversity of some Iranian Pistachio (Pistacia vera L.) cultivars using random amplified polymorphic DNA (RAPD), inter sequence repeat (ISSR) and simple sequence repeat (SSR) markers: a comparative study. Afr J Biotechnol 9(45):7632–7640

    CAS  Google Scholar 

  • Browicz K (1987) Pistacia lentiscus cv. Chia (Anacardiaceae) on Chios Island. Plant Syst Evol 155:189–195

    Article  Google Scholar 

  • Davis PH (1966) Flora of Turkey and the East Aegean islands, vol 2. University Press Edinburgh, Edinburgh

    Google Scholar 

  • Dollo L, Hormaza JI, Polito VS (1995) RAPD polymorphism among pistachio (Pistacia vera) cultivars. Fruit Var J 49:147–152

    Google Scholar 

  • Doyle JJ, Doyle JJ (1987) A rapid DNA isolation procedure prom small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Esfandiyari B, Davarynejad GH, Shahriari F, Kiani M, Mathe A (2012) Data to the sex determination in Pistacia species using molecular markers. Euphytica 185:227–231

    Article  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle

    Google Scholar 

  • Hormaza JI, Dollo L, Polito VS (1994a) Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet 89(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Hormaza JI, Dollo L, Polito VS (1994b) Determination of relatedness and geographical movements of Pistacia vera (pistachio:anacardiaceae) germplasm by RAPD analysis. Econ Bot 48:349–358

    Article  Google Scholar 

  • Kafkas S, Perl-Treves R (2001) Morphological and molecular phylogeny of Pistacia species in Turkey. Theor Appl Genet 102:908–915

    Article  CAS  Google Scholar 

  • Kafkas S, Perl-Treves R (2002) Inter-specific relationships in the genus Pistacia L. (Anacardiaceae) based on RAPD fingerprints. Hortic Sci 37:168–171

    CAS  Google Scholar 

  • Kafkas S, Cetiner S, Perl-Treves R (2001) Development of sex-associated RAPD markers in wild Pistacia species. J Hort Sci Biotech 76:242–246

    CAS  Google Scholar 

  • Kafkas S, Kaska A, Wassimi AN, Padulosi S (2006a) Molecular characterization of Afghan pistachio accessions by amplified fragment length polymorphisms (AFLPs). J Hort Sci Biotechnol 81:864–868

    CAS  Google Scholar 

  • Kafkas S, Ozkan H, Erol AB, Acar I, Alti HS (2006b) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: comparison of AFLP, ISSR, and RAPD marker. J Am Soc Hort Sci 131:522–529

    CAS  Google Scholar 

  • Kamiab F, Ebadi A, Panahi B, Tajabadi A (2014) RAPD Analysis for Sex Determination in Pistacia vera L. J Nuts 5:51–55

    Google Scholar 

  • Karimi HR, Zamani Z, Ebadi A, Fatahi R (2012) Genetic relationships among pistacia species studied by morphological characteristics and RAPD marker. Int J Nuts Relat Sci 3:49–56 (ISSN 2008-9937)

    Google Scholar 

  • Liu K, Muse SV (2005) Power marker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Loukas M, Pontikis CA (1979) Pollen isozyme polymorphism in types of Pistacia vera and related species as an aid in taxonomy. J Hort Sci 54:95–102

    CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Nahum S, Inbar M, Ne’eman G, Ben-Shlomo R (2008) Phenotypic plasticity and gene diversity in Pistacia lentiscus L. along environmental gradients in Israel. Tree Genet Genomes 4:777–785

    Article  Google Scholar 

  • Page RD, Holmes EC (1998) Molecular evolution: a phylogenetic approach. London Blackwell Science Ltd, London

    Google Scholar 

  • Parfitt DE, Badenes ML (1997) Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome. Proc Natl Acad Sci USA 94:7987–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Saharan MS, Verma A, Sharma I (2013) Comparative analysis of RAPD and ISSR marker assays for detecting genetic polymorphism in Tilletia indica. Eur J Exp Biol 3:380–387

    CAS  Google Scholar 

  • Pazouki L, Mardi M, Shanjani PS, Hagidimitriou M, Pirseyedi SM, Naghavi MR, Nekoui SK (2010) Genetic diversity and relationships among Pistacia species and cultivars. Conserv Genet 11(1):311–318

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdú M, Fayos PG (1998) Female biased sex ratios in Pistacia lentiscus L. (Anacardiaceae). Plant Ecol 135:95–101

    Article  Google Scholar 

  • Werner O, Sánchez-Gómez P, Carrion-Vilches MA, Guerra J (2002) Evaluation of genetic diversity in Pistacia lentiscus L. (Anacardiaceae) from the southern Iberian Peninsula and North Africa using RAPD assay. Isr J Plant Sci 50:11–18

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18:315–322

    Google Scholar 

  • Yi T, Wen J, Golan-Goldhirsh A, Parfitt DE (2008) Phylogenetics and reticulate evolution in Pistacia (Anacardiaceae). Am J Bot 95:241–251

    Article  CAS  PubMed  Google Scholar 

  • Zografou P, Linos A, Hagidimitriou M (2010) Genetic diversity among different genotypes of Pistacia lentiscus var. chia (mastic tree). In: Zakynthinos G (ed) XIV GREMPA meeting on pistachios and almonds. CIHEAM, Zaragoza, pp 159–163

    Google Scholar 

  • Zohary M (1952) A monographical study of the genus Pistacia. Palest J Bot Jerus Ser 5:187–238

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey KBAG (Project No: 110T941) and Marmara University Research Foundation (Project No: FEN-C-YLP-090414-0099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahu Altinkut Uncuoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuduli, A., Aydin, Y., Sakiroglu, M. et al. Molecular Evaluation of Genetic Diversity in Wild-Type Mastic Tree (Pistacia lentiscus L.). Biochem Genet 54, 619–635 (2016). https://doi.org/10.1007/s10528-016-9742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-016-9742-0

Keywords

Navigation