Skip to main content

Advertisement

Log in

Overexpression of Aiolos in Peripheral Blood Mononuclear Cell Subsets from Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Genetic studies demonstrate that the Aiolos polymorphisms contribute to the susceptibility to autoimmune diseases. The purpose of the study was to investigate the Aiolos expression in lymphocytes and monocytes in the peripheral blood from patients with SLE and RA, and to explore the correlation between Aiolos expression in cell subsets and laboratory measurements. Peripheral blood mononuclear cells (PBMC) from 32 patients with SLE, 35 patients with RA, and 37 healthy controls were purified. Aiolos expression in PBMC subsets was examined by flow cytometry. In SLE patients, a much higher percentage of Aiolos + CD8+ T cells and Aiolos + CD14+ monocytes was found, when compared with healthy controls (p = 8.29 × 10−5 and p = 1.01 × 10−5, respectively). Furthermore, the percentage of CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes expressing Aiolos in RA patients was also determined and each found higher than that in healthy controls (p = 0.009, p = 4.11 × 10−5, p = 0.001, and p = 1.11 × 10−5, respectively). The percentage of Aiolos + CD8+ T cells was weakly correlated with ESR in SLE patients and RF in RA patients (r s = 0.37, p = 0.038; r s = 0.34, p = 0.044, respectively). On the other hand, the percentage of Aiolos + CD14+ monocytes was significantly correlated with multiple laboratory measurements, including ESR, creatinine, CRP, LDH, proteinuria, albumin, and ACCPA in patients (r s = 0.62, p < 0.001; r s = 0.65, p < 0.001; r s = 0.44, p = 0.010; r s = 0.42, p = 0.022; r s = 0.52, p = 0.013; r s = 0.34, p = 0.048, respectively). To our knowledge, it is the first study to demonstrate overexpression of Aiolos in PBMC subsets in SLE and RA patients. The results indicate that overexpression of Aiolos may contribute to pathogenesis of SLE and RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antica M, Cicin-Sain L, Kapitanovic S, Matulic M, Dzebro S, Dominis M (2008) Aberrant Ikaros, Aiolos, and Helios expression in Hodgkin and non-Hodgkin lymphoma. Blood 111(6):3296–3297

    Article  CAS  PubMed  Google Scholar 

  • Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324

    Article  CAS  PubMed  Google Scholar 

  • Billot K, Parizot C, Arrouss I, Mazier D, Debre P, Rogner UC et al (2010) Differential aiolos expression in human hematopoietic subpopulations. Leuk Res 34(3):289–293

    Article  CAS  PubMed  Google Scholar 

  • Billot K, Soeur J, Chereau F, Arrouss I, Merle-Beral H, Huang ME et al (2011) Deregulation of Aiolos expression in chronic lymphocytic leukemia is associated with epigenetic modifications. Blood 117(6):1917–1927

    Article  CAS  PubMed  Google Scholar 

  • Blanco P, Pitard V, Viallard JF, Taupin JL, Pellegrin JL, Moreau JF (2005) Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 52(1):201–211

    Article  CAS  PubMed  Google Scholar 

  • Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 35(6):630–640

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Qiao Y, Diao C, Xu X, Chen Y, Du S et al (2014) Association between polymorphisms of the IKZF3 gene and systemic lupus erythematosus in a Chinese Han population. PLoS One 9(10):e108661

    Article  PubMed Central  PubMed  Google Scholar 

  • Carvalheiro H, da Silva JA, Souto-Carneiro MM (2013) Potential roles for CD8(+) T cells in rheumatoid arthritis. Autoimmun Rev 12(3):401–409

    Article  CAS  PubMed  Google Scholar 

  • Davignon JL, Hayder M, Baron M, Boyer JF, Constantin A, Apparailly F et al (2013) Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 52(4):590–598

    Article  CAS  Google Scholar 

  • Dhaouadi T, Sfar I, Haouami Y, Abdelmoula L, Turki S, Hassine LB et al (2013) Polymorphisms of Toll-like receptor-4 and CD14 in systemic lupus erythematosus and rheumatoid arthritis. Biomark Res 1(1):20

    Article  PubMed Central  PubMed  Google Scholar 

  • Duhamel M, Arrouss I, Merle-Beral H, Rebollo A (2008) The Aiolos transcription factor is up-regulated in chronic lymphocytic leukemia. Blood 111(6):3225–3228

    Article  CAS  PubMed  Google Scholar 

  • Eguchi K (2001) Apoptosis in autoimmune diseases. Intern Med 40(4):275–284

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg R, Albert D (2006) B-cell targeted therapies in rheumatoid arthritis and systemic lupus erythematosus. Nat Clin Pract Rheumatol 2(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Gizinski AM, Fox DA (2014) T cell subsets and their role in the pathogenesis of rheumatic disease. Curr Opin Rheumatol 26(2):204–210

    Article  CAS  PubMed  Google Scholar 

  • Kinne RW, Emmrich F, Freesmeyer M (2010) Clinical impact of radiolabeled anti-CD4 antibodies in the diagnosis of rheumatoid arthritis. Q J Nucl Med Mol Imaging 54(6):629–638

    CAS  PubMed  Google Scholar 

  • Koipally J, Renold A, Kim J, Georgopoulos K (1999) Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J 18(11):3090–3100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurreeman FA, Stahl EA, Okada Y, Liao K, Diogo D, Raychaudhuri S et al (2012) Use of a multiethnic approach to identify rheumatoid- arthritis-susceptibility loci, 1p36 and 17q12. Am J Hum Genet 90(3):524–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lessard CJ, Adrianto I, Ice JA, Wiley GB, Kelly JA, Glenn SB et al (2012) Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am J Hum Genet 90(4):648–660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Lee PY, Reeves WH (2010) Monocyte and macrophage abnormalities in systemic lupus erythematosus. Arch Immunol Ther Exp (Warsz) 58(5):355–364

    Article  CAS  Google Scholar 

  • Liote F, Boval-Boizard B, Weill D, Kuntz D, Wautier JL (1996) Blood monocyte activation in rheumatoid arthritis: increased monocyte adhesiveness, integrin expression, and cytokine release. Clin Exp Immunol 106(1):13–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E et al (1997) Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J 16(8):2004–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakase K, Ishimaru F, Avitahl N, Dansako H, Matsuo K, Fujii K et al (2000) Dominant negative isoform of the Ikaros gene in patients with adult B-cell acute lymphoblastic leukemia. Cancer Res 60(15):4062–4065

    CAS  PubMed  Google Scholar 

  • Narvi E, Nera KP, Terho P, Mustonen L, Granberg J, Lassila O (2007) Aiolos controls gene conversion and cell death in DT40 B cells. Scand J Immunol 65(6):503–513

    Article  CAS  PubMed  Google Scholar 

  • Nuckel H, Frey UH, Sellmann L, Collins CH, Duhrsen U, Siffert W (2009) The IKZF3 (Aiolos) transcription factor is highly upregulated and inversely correlated with clinical progression in chronic lymphocytic leukaemia. Br J Haematol 144(2):268–270

    Article  PubMed  Google Scholar 

  • Romero F, Martinez AC, Camonis J, Rebollo A (1999) Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization. EMBO J 18(12):3419–3430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rus V, Nguyen V, Puliaev R, Puliaeva I, Zernetkina V, Luzina I et al (2007) T cell TRAIL promotes murine lupus by sustaining effector CD4 Th cell numbers and by inhibiting CD8 CTL activity. J Immunol 178(6):3962–3972

    Article  CAS  PubMed  Google Scholar 

  • Schmitt C, Tonnelle C, Dalloul A, Chabannon C, Debre P, Rebollo A (2002) Aiolos and Ikaros: regulators of lymphocyte development, homeostasis and lymphoproliferation. Apoptosis 7(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Smiljanovic B, Grun JR, Biesen R, Schulte-Wrede U, Baumgrass R, Stuhlmuller B et al (2012) The multifaceted balance of TNF-alpha and type I/II interferon responses in SLE and RA: how monocytes manage the impact of cytokines. J Mol Med (Berl) 90(11):1295–1309

    Article  CAS  Google Scholar 

  • Sun J, Matthias G, Mihatsch MJ, Georgopoulos K, Matthias P (2003) Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. J Immunol 170(4):1699–1706

    Article  CAS  PubMed  Google Scholar 

  • Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25(11):1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Tarr T, Derfalvi B, Gyori N, Szanto A, Siminszky Z, Malik A et al (2015) Similarities and differences between pediatric and adult patients with systemic lupus erythematosus. Lupus 24(8):796–803

    Article  CAS  PubMed  Google Scholar 

  • Townsend MJ (2014) Molecular and cellular heterogeneity in the Rheumatoid Arthritis synovium: clinical correlates of synovitis. Best Pract Res Clin Rheumatol 28(4):539–549

    Article  PubMed  Google Scholar 

  • Wang JH, Avitahl N, Cariappa A, Friedrich C, Ikeda T, Renold A et al (1998) Aiolos regulates B cell activation and maturation to effector state. Immunity 9(4):543–553

    Article  CAS  PubMed  Google Scholar 

  • Yamagiwa T, Fukunishi S, Tachibana T, Okamura H, Yoshiya S, Kashiwamura S (2012) Abrogation of Treg function deteriorates rheumatoid arthritis. Mod Rheumatol 22(1):80–88

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Y, Li D, Fu J, Shi Q, Lu Y, Ju X (2014) Overexpression of AIOLOS inhibits cell proliferation and suppresses apoptosis in Nalm-6 cells. Oncol Rep 31(3):1183–1190

    CAS  PubMed  Google Scholar 

  • Zhuang Y, Lu Y, Li D, Sun N, Ju X (2015) Upregulation of AIOLOS induces apoptosis and enhances etoposide chemosensitivity in Jurkat leukemia cells. Oncol Rep 33(3):1319–1325

    PubMed  Google Scholar 

Download references

Acknowledgments

We especially appreciate all the SLE and RA patients making this study accomplished. This study was funded by the National Natural Science Foundation of China (No. 81401330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Liu, X., Du, S. et al. Overexpression of Aiolos in Peripheral Blood Mononuclear Cell Subsets from Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis. Biochem Genet 54, 73–82 (2016). https://doi.org/10.1007/s10528-015-9702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-015-9702-0

Keywords

Navigation