Skip to main content

Advertisement

Log in

The Impact of Maternal-Fetal Genetic Conflict Situations on the Pathogenesis of Preeclampsia

  • Review Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Preeclampsia leads to maternal and perinatal morbidity and mortality. The literature in English was reviewed to summarize recent advances in understanding the global gene expression changes in the pathogenesis of preeclampsia. We identified at least eight consistently enriched categories, relating to pregnancy maintenance, metabolism, oxidative stress, cell cycle regulation, implantation, decidualization, immune modulation, and vascular function. Expression profiling in preeclampsia placenta and normal placenta revealed 140 transcripts that were significantly differentially expressed, 30 (21.4%) of which were evolved for the protection of the mother, approximately three times less than the number of genes evolved for the benefit of the fetus [110 genes (78.6%)] in preeclampsia placenta versus normal placenta. The genome-wide analysis emphasizes the dysfunctional decidualization as the main mechanism involved in the development of preeclampsia. These genetic signaling events may occur from an imbalance in the maternal-fetal genetic response in the affected placenta. This is to our knowledge the first report on the pathogenesis of preeclampsia, in which preeclampsia may occur as a genetic consequence of maternal-fetal conflict situations during the early decidualization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Emera D, Romero R, Wagner G (2012) The evolution of menstruation: a new model for genetic assimilation: explaining molecular origins of maternal responses to fetal invasiveness. BioEssays 34:26–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan X et al (2014) Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest 124:4941–4952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Founds SA, Conley YP, Lyons-Weiler JF, Jeyabalan A, Hogge WA, Conrad KP (2009) Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta 30:15–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fowden AL, Moore T (2012) Maternal-fetal resource allocation: co-operation and conflict. Placenta 33(Suppl 2):e11–e15

    Article  PubMed  Google Scholar 

  • Goldman-Wohl D, Greenfield C, Haimov-Kochman R et al (2004) Eph and ephrin expression in normal placental development and preeclampsia. Placenta 25:623–630

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson C, Mjösberg J, Matussek A et al (2008) Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 3:e2078

    Article  PubMed Central  PubMed  Google Scholar 

  • Haig D (1993) Genetic conflicts in human pregnancy. Q Rev Biol 68:495–532

    Article  CAS  PubMed  Google Scholar 

  • Haouzi D, Dechaud H, Assou S, Monzo C, de Vos J, Hamamah S (2011) Transcriptome analysis reveals dialogues between human trophectoderm and endometrial cells during the implantation period. Hum Reprod 26:1440–1449

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Platas I, Court F, Camprubi C et al. (2013) Imprinting at the PLAGL1 domain is contained within a 70-kb CTCF/cohesin-mediated non-allelic chromatin loop. Nucleic Acids Res 41:2171–2179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia RZ, Zhang X, Hu P et al (2012) Screening for differential methylation status in human placenta in preeclampsia using a CpG island plus promoter microarray. Int J Mol Med 30:133–141

    CAS  PubMed  Google Scholar 

  • Johansson A, Curran JE, Johnson MP et al (2011) Identification of ACOX2 as a shared genetic risk factor for preeclampsia and cardiovascular disease. Eur J Hum Genet 19:796–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang JH, Song H, Yoon JA et al (2011) Preeclampsia leads to dysregulation of various signaling pathways in placenta. J Hypertens 29:928–936

    Article  CAS  PubMed  Google Scholar 

  • Laivuori H (2007) Genetic aspects of preeclampsia. Front Biosci 12:2372–2382

    Article  CAS  PubMed  Google Scholar 

  • Lapaire O, Grill S, Lalevee S, Kolla V, Hösli I, Hahn S (2012) Microarray screening for novel preeclampsia biomarker candidates. Fetal Diagn Ther 31:147–153

    Article  PubMed  Google Scholar 

  • Lee GS, Joe YS, Kim SJ, Shin JC (2010) Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas. Arch Gynecol Obstet 282:363–369

    Article  CAS  PubMed  Google Scholar 

  • Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683

    Article  CAS  PubMed  Google Scholar 

  • Li HP, Chen X, Li MQ (2013) Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int J Clin Exp Pathol 6:650–659

    PubMed Central  CAS  PubMed  Google Scholar 

  • Løset M, Mundal SB, Johnson MP et al (2011) A transcriptional profile of the decidua in preeclampsia. Am J Obstet Gynecol 204:84-e1–84-e27

    Article  Google Scholar 

  • Louwen F, Muschol-Steinmetz C, Reinhard J, Reitter A, Yuan J (2012) A lesson for cancer research: placental microarray gene analysis in preeclampsia. Oncotarget 3:759–773

    PubMed Central  PubMed  Google Scholar 

  • Millar L, Streiner N, Webster L et al (2005) Early placental insulin-like protein (INSL4 or EPIL) in placental and fetal membrane growth. Biol Reprod 73:695–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Normark BB, Ross L (2014) Genetic conflict, kin and the origins of novel genetic systems. Philos Trans R Soc Lond B Biol Sci 369:20130364

    Article  PubMed Central  PubMed  Google Scholar 

  • Pijnenborg R, Vercruysse L, Hanssens M (2008) Fetal-maternal conflict, trophoblast invasion, preeclampsia, and the red queen. Hypertens Pregnancy 27:183–196

    Article  PubMed  Google Scholar 

  • Rajakumar A, Chu T, Handley DE et al (2011) Maternal gene expression profiling during pregnancy and preeclampsia in human peripheral blood mononuclear cells. Placenta 32:70–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts JM, Hubel CA (2009) The two stage model of preeclampsia: variations on the theme. Placenta 30(Suppl A):S32–S37

    Article  PubMed Central  PubMed  Google Scholar 

  • Sado T, Naruse K, Noguchi T et al (2011) Inflammatory pattern recognition receptors and their ligands: factors contributing to the pathogenesis of preeclampsia. Inflamm Res 60:509–520

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger S, Pollheimer J, Knöfler M (2010) Wnt signalling in implantation, decidualisation and placental differentiation–review. Placenta 31:839–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staun-Ram E, Shalev E (2005) Human trophoblast function during the implantation process. Reprod Biol Endocrinol 3:56

    Article  PubMed Central  PubMed  Google Scholar 

  • Stavréus-Evers A, Masironi B, Landgren BM, Holmgren A, Eriksson H, Sahlin L (2002) Immunohistochemical localization of glutaredoxin and thioredoxin in human endometrium: a possible association with pinopodes. Mol Hum Reprod 8:546–551

    Article  PubMed  Google Scholar 

  • Tsai S, Hardison NE, James AH et al (2011) Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta 32:175–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uusküla L, Rull K, Nagirnaja L, Laan M (2011) Methylation allelic polymorphism (MAP) in chorionic gonadotropin beta5 (CGB5) and its association with pregnancy success. J Clin Endocrinol Metab 96:E199–E207

    Article  PubMed Central  PubMed  Google Scholar 

  • Várkonyi T, Nagy B, Füle T et al (2011) Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta 32(Suppl):S21–S29

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel WF, Aszódi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winn VD, Gormley M, Fisher SJ (2011) The impact of preeclampsia on gene expression at the maternal–fetal interface. Pregnancy Hypertens 1:100–108

    PubMed Central  PubMed  Google Scholar 

  • Xia HF, Ma JJ, Sun J, Yang Y, Peng JP (2010) Retinoic acid metabolizing enzyme CYP26A1 is implicated in rat embryo implantation. Hum Reprod 25:2985–2998

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Zhu Q, Wang Y, Ren Y, Zhang L, Zhou Y (2006) Genomewide oligonucleotide microarray analysis on placentae of pre-eclamptic pregnancies. Gynecol Obstet Invest 62:108–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan to the Department of Obstetrics and Gynecology, Nara Medical University (H. Kobayashi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kobayashi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, H. The Impact of Maternal-Fetal Genetic Conflict Situations on the Pathogenesis of Preeclampsia. Biochem Genet 53, 223–234 (2015). https://doi.org/10.1007/s10528-015-9684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-015-9684-y

Keywords

Navigation