Skip to main content

Advertisement

Log in

MicroRNAs as Markers for Neurally Committed CD133+/CD34+ Stem Cells Derived from Human Umbilical Cord Blood

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Neural differentiation of the CD133+/CD34+ subpopulation of human umbilical cord blood stem cells was investigated, and neuro-miR (mir-9 and mir-124) expression was examined. An efficient induction protocol for neural differentiation of hematopoietic stem cells together with the exclusion of retinoic acid in this process was also studied. Transcription of some neural markers such as microtubule-associated protein-2, beta-tubulin III, and neuron-specific enolase was evaluated by real-time PCR, immunocytochemistry, and western blotting. Increased expression of neural indicators in the treated cells confirmed the appropriate neural differentiation, which supported the high efficiency of our defined neuronal induction protocol. Verified high expression of neuro-miRNAs along with neuronal specific proteins not only strengthens the regulatory role of miRNAs in determining stem cell fate but also introduces these miRNAs as novel indicators of neural differentiation. These data highlight the prominent therapeutic potential of hematopoietic stem cells for use in cell therapy of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bakhshandeh B, Hafizi M, Ghaemi N, Soleimani M (2012a) Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol Lett 34(8):1579–1587

    Article  PubMed  CAS  Google Scholar 

  • Bakhshandeh B, Soleimani M, Hafizi M, Ghaemi N (2012b) A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 64(5):523–540

    Article  PubMed  CAS  Google Scholar 

  • Bakhshandeh B, Soleimani M, Hafizi M, Paylakhi SH, Ghaemi N (2012c) MicroRNA signature associated with osteogenic lineage commitment. Mol Biol Rep 39:7569–7581

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3:108–124

    CAS  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell’Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Nagler A (2004) Umbilical cord blood transplantation: How, when and for whom? Blood Rev 18:167–179

    Article  PubMed  Google Scholar 

  • Culbreth ME, Harrill JA, Freudenrich TM, Mundy WR, Shafer TJ (2012) Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Neurotoxicology. doi:10.1016/j.neuro.2012.05.012

    PubMed  Google Scholar 

  • El-Badri NS, Hakki A, Saporta S, Liang X, Madhusodanan S, Willing AE, Sanberg CD, Sanberg PR (2006) Cord blood mesenchymal stem cells: Potential use in neurological disorders. Stem Cells Dev 15:497–506

    Article  PubMed  CAS  Google Scholar 

  • Erceg S, Ronaghi M, Zipancic I, Lainez S, Rosello MG, Xiong C, Moreno-Manzano V, Rodriguez-Jimenez FJ, Planells R, Alvarez-Dolado M, Bhattacharya SS, Stojkovic M (2010) Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells. Stem Cells Dev 19:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Zhang Q, Tang F, Han Z, Wang G, Han Z (2005) Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett 380:322–325

    Article  PubMed  CAS  Google Scholar 

  • Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, Corbeil D (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26

    Article  PubMed  CAS  Google Scholar 

  • Gage F (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, Fiedler J, Schwarz J, Brenner R, Storch A (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83:1502–1514

    Article  PubMed  CAS  Google Scholar 

  • Hobert O (2004) Common logic of transcription factor and microRNA action. Trends Biochem Sci 29:462–468

    Article  PubMed  CAS  Google Scholar 

  • Horner P, Power A, Kempermann G, Kuhn H, Palmer T, Winkler J, Thal L, Gage F (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228

    PubMed  CAS  Google Scholar 

  • Jang Y, Park J, Lee M, Yoon B, Yang Y, Yang S, Kim S (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75:573–584

    Article  PubMed  CAS  Google Scholar 

  • Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8:R173

    Article  PubMed  Google Scholar 

  • Koh LP (2004) Unrelated umbilical cord blood transplantation in children and adults. Ann Acad Med Singap 33:559–569

    PubMed  CAS  Google Scholar 

  • Kole AJ, Swahari V, Hammond SM, Deshmukh M (2011) miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 25:125–130

    Article  PubMed  CAS  Google Scholar 

  • Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R (2011) MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 39:2869–2879

    Article  PubMed  CAS  Google Scholar 

  • Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70:353–361

    Article  PubMed  CAS  Google Scholar 

  • Maiorano NA, Mallamaci A (2010) The pro-differentiating role of miR-124: indicating the road to become a neuron. RNA Biol 7:528–533

    Article  PubMed  CAS  Google Scholar 

  • Mareschia K, Novarab M, Rustichellia D, Ferreroa I, Guidob D, Carboneb E, Medicoc E, Madona E, Vercellid A, Fagioli F (2006) Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types. Exp Hematol 34:1563–1572

    Article  Google Scholar 

  • Moise KJ Jr (2005) Umbilical cord stem cells. Obstet Gynecol 106:1393–1407

    Article  PubMed  Google Scholar 

  • Nadri S, Soleimani M, Mobarra Z, Amini S (2008) Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochem Biophys Res Commun 377:423–428

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249

    Article  PubMed  CAS  Google Scholar 

  • Padovan C, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A (2003) Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant 12:839–848

    PubMed  Google Scholar 

  • Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    PubMed  CAS  Google Scholar 

  • Reddi AS, Kuppasani K, Ende N (2010) Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 5:356–361

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Sun G, Zhao C, Stewart R (2008) Neural stem cell self-renewal. Crit Rev Oncol Hematol 65:43–53

    Article  PubMed  Google Scholar 

  • Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31:3407–3422

    Article  PubMed  CAS  Google Scholar 

  • Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37:715–719

    Article  PubMed  CAS  Google Scholar 

  • Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn F (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  PubMed  Google Scholar 

  • Specht H, Esdar C, Oehrlein S, Maelicke A (1998) Retinoic acid induces apoptosis-associated neural differentiation of a murine teratocarcinoma cell line. J Neurochem 70:47–58

    PubMed  Google Scholar 

  • Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, Baud O, Gressens P (2011) Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 70:698–712

    Article  PubMed  Google Scholar 

  • Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Muller HW, Wernet P (2011) MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS ONE 6:e16138

    Article  PubMed  CAS  Google Scholar 

  • Voigt A, Zintl F (2003) Effects of retinoic acid on proliferation, apoptosis, cytotoxicity, migration, and invasion of neuroblastoma cells. Med Pediatric Oncol 40:205–213

    Article  CAS  Google Scholar 

  • Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231

    Article  PubMed  CAS  Google Scholar 

  • Zangiacomi V, Balon N, Maddens S, Lapierre V, Tiberghien P, Schlichter R, Versaux-Botteri C, Deschaseaux F (2008) Cord blood-derived neurons are originated from CD133+/CD34 stem/progenitor cells in a cell-to-cell contact dependent manner. Stem Cells Dev 17:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Chang S, Rao M (2012) Human cord blood applications in cell therapy: looking back and look ahead. Expert Opin Biol Ther 12:1059–1066

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article was financially supported by the Stem Cell Technology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafizi, M., Atashi, A., Bakhshandeh, B. et al. MicroRNAs as Markers for Neurally Committed CD133+/CD34+ Stem Cells Derived from Human Umbilical Cord Blood. Biochem Genet 51, 175–188 (2013). https://doi.org/10.1007/s10528-012-9553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-012-9553-x

Keywords

Navigation