Skip to main content

Advertisement

Log in

MicroRNA signature associated with osteogenic lineage commitment

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cell-based approaches offer a potential therapeutic strategy for appropriate bone manufacturing. Capable of differentiating into multiple cell types especially osteoblasts spontaneously, unrestricted somatic stem cell (USSC) seems to be a suitable candidate. Recent studies have shown the involvement of microRNAs in several biological processes. miRNA microarray profiling was applied in order to identify the osteo-specific miRNA signature. Prior to this analysis, osteogenic commitment of osteoblasts was evaluated by measuring ALPase activity, biomineralization, specific staining and evaluation of some main osteogenic marker genes. To support our findings, various in silico explorations (for both putative targets and signaling pathways) and empirical analyses (miRNA transfections followed by qPCR of osteogenic indicators and ALPase activity measurement) were carried out. The function of GSK-3b inhibitor was also studied to investigate the role of WNT in osteogenesis. Transient modulation of multiple osteo-miRs (such as mir-199b, 1274a, 30b) with common targets (such as BMPR, TCFs, SMADs) as mediators of osteogenic pathways including cell–cell interactions, WNT and TGF-beta pathways, suggests a mechanism for rapid induction of the osteogenesis as an anti-miRNA therapy. The results of this research have identified the miRNA signature which regulates the osteogenesis mechanism in USSC. To conclude, our study reveals more details about the allocation of USSCs into osteogenic lineage through modulatory effect of miRNAs on targets and pathways required for creating a tissue-specific phenotype and may aid in future clinical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  2. Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15(3):467–480. doi:10.1038/sj.mt.6300084

    Article  PubMed  CAS  Google Scholar 

  3. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Muller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135. doi:10.1084/jem.20040440jem

    Article  PubMed  Google Scholar 

  4. Bakhshandeh B, Soleimani M, Ghaemi N, Shabani I (2011) Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacol Sin 32(5):626–636. doi:10.1038/aps.2011.8

    Article  PubMed  CAS  Google Scholar 

  5. Miraoui H, Marie PJ (2010) Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal 3(146):re9. doi:10.1126/scisignal.3146re9

    Article  PubMed  Google Scholar 

  6. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579(26):5904–5910. doi:10.1016/j.febslet.2005.09.040

    Article  PubMed  CAS  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:S0092867404000455[pii]

    Article  PubMed  CAS  Google Scholar 

  8. Wang X (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34(5):1646–1652. doi:34/5/1646[pii]10.1093/nar/gkl068

    Article  PubMed  CAS  Google Scholar 

  9. Sheyn D, Pelled G, Netanely D, Domany E, Gazit D (2010) The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study. Tissue Eng 16(11):3403–3412. doi:10.1089/ten.tea.2009.0834

    Article  Google Scholar 

  10. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11(2):93–109

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2011) A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA 108(24):9863–9868. doi:10.1073/pnas.1018493108

    Article  PubMed  CAS  Google Scholar 

  12. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23(5):243–249. doi:10.1016/j.tig.2007.02.011

    Article  PubMed  CAS  Google Scholar 

  13. He J, Zhang JF, Yi C, Lv Q, Xie WD, Li JN, Wan G, Cui K, Kung HF, Yang J, Yang BB, Zhang Y (2010) miRNA-mediated functional changes through co-regulating function related genes. PLoS One 5(10):e13558. doi:10.1371/journal.pone.0013558

    Article  PubMed  Google Scholar 

  14. Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2010) A network connecting Runx2, SATB2, and the miR-23a ~ 27a ~ 24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA 107(46):19879–19884. doi:10.1073/pnas.1007698107

    Article  PubMed  CAS  Google Scholar 

  15. Itoh T, Takeda S, Akao Y (2010) MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J Biol Chem 285(36):27745–27752. doi:10.1074/jbc.M110.105080

    Article  PubMed  CAS  Google Scholar 

  16. Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, Gilissen C, Jansen BJ, Adema GJ, Kogler G, le Sage C, Agami R, van der Reijden BA, Jansen JH (2010) MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 19(6):877–885. doi:10.1089/scd.2009.0112

    Article  PubMed  CAS  Google Scholar 

  17. Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS (2009) miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 24(5):816–825. doi:10.1359/jbmr.081230

    Article  PubMed  CAS  Google Scholar 

  18. Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A RUNX2/MIR-3960/MIR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339. doi:10.1074/jbc.M110.176099

    Article  PubMed  CAS  Google Scholar 

  19. Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 106(49):20794–20799. doi:10.1073/pnas.0909311106

    Article  PubMed  CAS  Google Scholar 

  20. Davison TS, Johnson CD, Andruss BF (2006) Analyzing micro-RNA expression using microarrays. Methods Enzymol 411:14–34. doi:10.1016/S0076-6879(06)11002-2

    Article  PubMed  CAS  Google Scholar 

  21. Cho JH, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, Marsh C, Galas D (2011) Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics 4:8. doi:10.1186/1755-8794-4-8

    Article  PubMed  CAS  Google Scholar 

  22. Gao J, Yang T, Han J, Yan K, Qiu X, Zhou Y, Fan Q, Ma B (2011) MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. J Cell Biochem 112(7):1844–1856. doi:10.1002/jcb.23106

    Article  PubMed  CAS  Google Scholar 

  23. Kim S, Min WK, Chun S, Lee W, Chung HJ, Choi SJ, Yang SE, Yang YS, Yoo JI (2010) Protein expression profiles during osteogenic differentiation of mesenchymal stem cells derived from human umbilical cord blood. Tohoku J Exp Med 221(2):141–150

    Article  PubMed  CAS  Google Scholar 

  24. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3. doi:10.2202/1544-6115.1027

  25. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. doi:10.1186/gb-2004-5-10-r80

    Article  PubMed  Google Scholar 

  26. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208

    Article  PubMed  CAS  Google Scholar 

  27. Wu X, Watson M (2009) CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25(6):832–833. doi:10.1093/bioinformatics/btp059

    Article  PubMed  CAS  Google Scholar 

  28. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153. doi:10.1093/nar/gkm995

    PubMed  CAS  Google Scholar 

  29. Beck GR Jr, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97(15):8352–8357. doi:10.1073/pnas.140021997140021997[pii]

    Article  PubMed  CAS  Google Scholar 

  30. Caldas J, Kaski S (2011) Hierarchical generative biclustering for microRNA expression analysis. J Comput Biol 18(3):251–261. doi:10.1089/cmb.2010.0256

    Article  PubMed  CAS  Google Scholar 

  31. de Gorter DJ, van Dinther M, Korchynskyi O, ten Dijke P (2011) Biphasic effects of transforming growth factor beta on bone morphogenetic protein-induced osteoblast differentiation. J Bone Miner Res 26(6):1178–1187. doi:10.1002/jbmr.313

    Article  PubMed  Google Scholar 

  32. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663):1483–1487. doi:10.1126/science.1094291303/5663/1483[pii]

    Article  PubMed  CAS  Google Scholar 

  33. Zhou S (2011) TGF-beta regulates beta-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem 112(6):1651–1660. doi:10.1002/jcb.23079

    Article  PubMed  CAS  Google Scholar 

  34. Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N, Waterman M, Bowerman B, Clevers H, Shibuya H, Matsumoto K (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399(6738):798–802. doi:10.1038/21674

    Article  PubMed  CAS  Google Scholar 

  35. Yamada M, Ohnishi J, Ohkawara B, Iemura S, Satoh K, Hyodo-Miura J, Kawachi K, Natsume T, Shibuya H (2006) NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J Biol Chem 281(30):20749–20760. doi:10.1074/jbc.M602089200

    Article  PubMed  CAS  Google Scholar 

  36. Matsumoto T, Okabe T, Ikawa T, Iida T, Yasuda H, Nakamura H, Wakitani S (2010) Articular cartilage repair with autologous bone marrow mesenchymal cells. J Cell Physiol 225(2):291–295. doi:10.1002/jcp.22223

    Article  PubMed  CAS  Google Scholar 

  37. Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32(4):189–197. doi:10.1016/j.tibs.2007.02.006

    Article  PubMed  CAS  Google Scholar 

  38. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22(3):165–173. doi:10.1016/j.tig.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  39. Dallas SL, Bonewald LF (2010) Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci 1192:437–443. doi:10.1111/j.1749-6632.2009.05246.x

    Article  PubMed  CAS  Google Scholar 

  40. Itoh T, Nozawa Y, Akao Y (2009) MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 284(29):19272–19279. doi:10.1074/jbc.M109.014001

    Article  PubMed  CAS  Google Scholar 

  41. Palmieri A, Pezzetti F, Brunelli G, Zollino I, Scapoli L, Martinelli M, Arlotti M, Carinci F (2007) Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone. J Biomed Sci 14(6):777–782. doi:10.1007/s11373-007-9193-z

    Article  PubMed  CAS  Google Scholar 

  42. Palmieri A, Pezzetti F, Brunelli G, Martinelli M, Scapoli L, Arlotti M, Masiero E, Carinci F (2008) Medpor regulates osteoblast’s microRNAs. Biomed Mater Eng 18(2):91–97

    PubMed  CAS  Google Scholar 

  43. Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104(45):17719–17724. doi:10.1073/pnas.0703890104

    Article  PubMed  CAS  Google Scholar 

  44. Ren J, Jin P, Wang E, Marincola FM, Stroncek DF (2009) MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 7:20. doi:10.1186/1479-5876-7-20

    Article  PubMed  Google Scholar 

  45. Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Force Aldred S, Fedorov Y (2009) Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One 4(5):e5605. doi:10.1371/journal.pone.0005605

    Article  PubMed  Google Scholar 

  46. Malm D, Nilssen O (2008) Alpha-mannosidosis. Orphanet J Rare Dis 3:21. doi:10.1186/1750-1172-3-21

    Article  PubMed  Google Scholar 

  47. Tabas JA, Hahn GV, Cohen RB, Seaunez HN, Modi WS, Wozney JM, Zasloff M, Kaplan FS (1993) Chromosomal assignment of the human gene for bone morphogenetic protein 4. Clin orthop Res 293:310–316

    Google Scholar 

  48. Kotzot D (2004) Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprinting. Ann Genet 47(3):251–260. doi:10.1016/j.anngen.2004.03.006

    Article  PubMed  Google Scholar 

  49. Guilherme RS, de Freitas Ayres Meloni V, Sodre CP, Christofolini DM, Pellegrino R, de Mello CB, Conlin LK, Hutchinson AL, Spinner NB, Brunoni D, Kulikowski LD, Melaragno MI (2010) Cytogenetic and molecular evaluation and 20-year follow-up of a patient with ring chromosome 14. Am J Med Genet A 152A(11):2865–2869. doi:10.1002/ajmg.a.33689

    Article  PubMed  Google Scholar 

  50. Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 23(2):287–295. doi:10.1359/jbmr.071011

    Article  PubMed  CAS  Google Scholar 

  51. Meyers VE, Zayzafoon M, Gonda SR, Gathings WE, McDonald JM (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J Cell Biochem 93(4):697–707. doi:10.1002/jcb.20229

    Article  PubMed  CAS  Google Scholar 

  52. Yadav VK, Arantes HP, Barros ER, Lazaretti-Castro M, Ducy P (2010) Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif Tissue Int 86(5):382–388. doi:10.1007/s00223-010-9350-7

    Article  PubMed  CAS  Google Scholar 

  53. Arnsdorf EJ, Tummala P, Jacobs CR (2009) Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS One 4(4):e5388. doi:10.1371/journal.pone.0005388

    Article  PubMed  Google Scholar 

  54. Kii I, Amizuka N, Shimomura J, Saga Y, Kudo A (2004) Cell-cell interaction mediated by cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage. J Bone Miner Res 19(11):1840–1849. doi:10.1359/JBMR.040812

    Article  PubMed  CAS  Google Scholar 

  55. Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544. doi:10.1016/j.ejca.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  56. Lossner C, Meier J, Warnken U, Rogers MA, Lichter P, Pscherer A, Schnolzer M (2011) Quantitative proteomics identify novel miR-155 target proteins. PLoS One 6(7):e22146. doi:10.1371/journal.pone.0022146

    Article  PubMed  Google Scholar 

  57. Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, Lim XY, Vaithilingam A, Salto-Tellez M, Iacopetta B, Ito Y, Soong R (2010) MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer 46(8):1456–1463. doi:10.1016/j.ejca.2010.01.036

    Article  PubMed  CAS  Google Scholar 

  58. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364. doi:10.1002/stem.288

    PubMed  Google Scholar 

  59. Krause U, Harris S, Green A, Ylostalo J, Zeitouni S, Lee N, Gregory CA (2010) Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy. Proc Natl Acad Sci USA 107(9):4147–4152. doi:10.1073/pnas.0914360107

    Article  PubMed  CAS  Google Scholar 

  60. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280(39):33132–33140. doi:10.1074/jbc.M500608200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Stem Cell Biology Department-Stem Cell Technology Research Center. We appreciate Mr. Seyed Zarvan Shahrzad for his contribution in English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhshandeh, B., Soleimani, M., Hafizi, M. et al. MicroRNA signature associated with osteogenic lineage commitment. Mol Biol Rep 39, 7569–7581 (2012). https://doi.org/10.1007/s11033-012-1591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1591-2

Keywords

Navigation