Skip to main content

Advertisement

Log in

Molecular Cloning, Expression, and Chromosomal Mapping of the Porcine CDC-2-Like Kinase 1 (CLK1) Gene

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

CDC-2-like kinase 1 (CLK1) plays a critical role in regulating pre-RNA splicing and post-transcriptional gene expression. Two distinct transcripts of the porcine CLK1 gene, known as full-length CLK1 and truncated CLK1 (CLK1 T), were identified by in silico cloning, RT-PCR, and RACE. The entire cDNA sequence of full-length CLK1 was 1771 bp, containing a 1455 bp ORF encoding a deduced protein of 484 amino acids. The complete cDNA sequence of CLK1 T is 1680 bp, containing a 414 bp ORF encoding a deduced protein of 137 amino acids. The genomic structure and sequence of porcine CLK1 were analyzed using a bacterial artificial chromosome clone of a Chinese Erhualian pig, with 13 exons and 12 introns spanning approximately 9 kb. RT-PCR revealed that the full-length and truncated splice forms were expressed at equivalent levels in pig heart, fat, liver, spleen, and lymph tissues. The full-length splice form was expressed at a much higher level than the truncated form in tissues of the pig cerebrum, longissimus dorsi, small intestine, and kidney. The CLK1 gene was physically assigned to SSC 15 between microsatellite markers SW1316 and SW2083 using the IMpRH panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ben-David Y, Letwin K, Tannock L, Bernstein A, Pawson T (1991) A mammalian protein kinase with potential for serine/threonine and tyrosine phosphorylation is related to cell cycle regulators. EMBO J 10:317–325

    PubMed  CAS  Google Scholar 

  • Boucher L, Ouzounis CA, Enright AJ, Blencowe BJ (2001) A genome-wide survey of RS domain proteins. RNA 7:1693–1701

    PubMed  CAS  Google Scholar 

  • Caceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193

    Article  PubMed  CAS  Google Scholar 

  • Colwill K, Feng LL, Yeakley JM, Gish GD, Cáceres JF, Pawson T, Fu XD (1996a) SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for Serine/Arginine-rich splicing factors. J Biol Chem 271:24569–24575

    Article  PubMed  CAS  Google Scholar 

  • Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, Duncan PI (1996b) The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 15:265–275

    PubMed  CAS  Google Scholar 

  • Du C, McGuffin ME, Dauwalder B, Rabinow L, Mattox W (1998) Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila. Mol Cell 2:741–750

    Article  PubMed  CAS  Google Scholar 

  • Duncan PI, Howell BW, Marius RM, Drmanic S, Douville EMJ, Bell JC (1995) Alternative splicing of STY, a nuclear dual specificity kinase. J Biol Chem 270:21524–21531

    Article  PubMed  CAS  Google Scholar 

  • Duncan PI, Stojdl DF, Marius RM, Bell JC (1997) In vivo regulation of alternative pre-mRNA splicing by the CLK1 protein kinase. Mol Cell Biol 17:5996–6001

    PubMed  CAS  Google Scholar 

  • Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Frelat G, Gellin J (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252–262

    Article  PubMed  CAS  Google Scholar 

  • Guil S, Caceres JF (2007) Stressful splicing. Mol Cell 28:180–181

    Article  PubMed  CAS  Google Scholar 

  • Hanes J, von der Kammer H, Klaudiny J, Scheit KH (1994) Characterization by cDNA cloning of two new human protein kinases: evidence by sequence comparison of a new family of mammalian protein kinases. J Mol Biol 244:665–672

    Article  PubMed  CAS  Google Scholar 

  • Hartmann AM, Rujescu D, Giannakouros T, Nikolakaki E, Goedert M, Mandelkow EM, Gao QS, Andreadis A, Stamm S (2001) Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol Cell Neurosci 18:80–90

    Article  PubMed  CAS  Google Scholar 

  • Howell BW, Afar DEH, Lew J, Douville EMJ, Icely PLE, Gray DA, Bell JC (1991) STY, a tyrosine-phosphorylating enzyme with sequence homology to serine/threonine kinases. Mol Cell Biol 11:568–572

    PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  • Johnson KW, Smith KA (1991) Molecular cloning of a novel human CDC2/CDC28-like protein kinase. J Biol Chem 266:3402–3407

    PubMed  CAS  Google Scholar 

  • Lee K, Du C, Horn M, Rabinow L (1996) Activity and autophosphorylation of LAMMER protein kinases. J Biol Chem 271:27299–27303

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zhang Y, Liu Z, Guo L, Wang X, Fei J, Feng J, Zhao R, Hu X, Li N (2006) A five-fold pig bacterial artificial chromosome library: a resource for positional cloning and physical mapping. Prog Nat Sci 16:889–892

    Article  Google Scholar 

  • Menegay HJ, Myers MP, Moeslein FM, Landreth GE (2000) Biochemical characterization and localization of the dual specificity kinase CLK1. J Cell Sci 113:3241–3253

    PubMed  CAS  Google Scholar 

  • Nayler O, Stamm S, Ullrich A (1997) Characterization and comparison of four serine- and arginine-rich (SR) protein kinases. Biochem J 326:693–700

    PubMed  CAS  Google Scholar 

  • Nikolakaki E, Du C, Lai J, Giannakouros T, Cantley L, Rabinow L (2002) Phosphorylation by LAMMER protein kinases: determination of a consensus site, identification of in vitro substrates, and implications for substrate preferences. Biochemistry 41:2055–2066

    Article  PubMed  CAS  Google Scholar 

  • Prasad J, Manley JL (2003) Regulation and substrate specificity of the SR protein kinase Clk/Sty. Mol Cell Biol 23:4139–4149

    Article  PubMed  CAS  Google Scholar 

  • Prasad J, Colwill K, Pawson T, Manley JL (1999) The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol Cell Biol 19:6991–7000

    PubMed  CAS  Google Scholar 

  • Sanford JR, Gray NK, Beckmann K, Caceres JF (2004) A novel role for shuttling SR proteins in mRNA translation. Genes Dev 18:755–768

    Article  PubMed  CAS  Google Scholar 

  • Sanford JR, Ellis J, Caceres JF (2005) Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans 33:443–446

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Sessa G, Fluhr R (2000) The ethylene-inducible PK12 kinase mediates the phosphorylation of SR splicing factors. Plant J 21:91–96

    Article  PubMed  CAS  Google Scholar 

  • Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW, Buerke M, Tilley RE, Rondina MT, Harris EM, Kraiss LW, Mackman N, Zimmerman GA, Weyrich AS (2006) Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets. J Exp Med 203:2433–2440

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, Raz V, Savaldi S, Fluhr R (1996) PK12, a plant dual-specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene. Plant Cell 8:2223–2234

    Article  PubMed  CAS  Google Scholar 

  • Talmadge CB, Finkernagel S, Sumegi J, Sciorra L, Rabinow L (1998) Chromosomal mapping of three human LAMMER protein-kinase-encoding genes. Hum Genet 103:523–524

    Article  PubMed  CAS  Google Scholar 

  • Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J (1998) Construction of a whole genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:182–188

    Article  PubMed  CAS  Google Scholar 

  • Yun B, Farkas R, Lee K, Rabinow L (1994) The Doa locus encodes a member of a new protein kinase family and is essential for eye and embryonic development in Drosophila melanogaster. Genes Dev 8:1160–1173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Ning Li, Dr. Xiaoxiang Hu, and Liming Ren for the provision of the Erhualian pig BAC library. We thank Dr. Kui Li, Dr. Zhonglin Tang, INRA, and the University of Minnesota for the provision of the IMpRH panel. This work was supported by the National 863 Program of China (2007AA10Z161), Natural Science Foundation of China (30771545), National 973 Program of China (2006CB102101), and the Natural Science Foundation of Guangdong (04205804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Qi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, S.H., Li, J.Q., Chen, Y.S. et al. Molecular Cloning, Expression, and Chromosomal Mapping of the Porcine CDC-2-Like Kinase 1 (CLK1) Gene. Biochem Genet 47, 266–275 (2009). https://doi.org/10.1007/s10528-009-9226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-009-9226-6

Keywords

Navigation