Skip to main content
Log in

Comparative Analysis of the Stress–Strain State of a Lightweight 3D-Printed Shoulder Implant

  • Published:
Biomedical Engineering Aims and scope

The use of 3D printing in orthopedics has several advantages, one of which is a reduction of the implant weight due to the use of honeycomb structures. In this work, a technique for making a 3D-printed shoulder implant lighter without compromising its rigidity and strength is suggested. Comparative analysis of the stress–strain state of a shoulder implant has been carried out for two modifications of the implant: solid and honeycomb (lightweight). The first (solid single-piece) implant has been manufactured using conventional technologies; the second (lightweight honeycomb), by 3D printing. The honeycomb implant has been shown to exhibit the same strength as its solid counterpart, which makes it safe for orthopedic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanchez-Sotelo, J., Cofield, R. H., and Rowland, C. M., “Shoulder hemiarthroplasty for glenohumeral arthritis associated with severe rotator cuff deficiency,” JBJS, 83, No. 12, 1814-1822 (2001).

    Article  CAS  Google Scholar 

  2. Fuhrmann, R. A., Roth, A., and Venbrocks, R. A., “Salvage of the upper extremity in cases of tumorous destruction of the proximal humerus,” J. Cancer Res. Clin. Oncol., 126, No. 6, 337-344 (2000).

    Article  CAS  Google Scholar 

  3. Rodl, R. W. et al., “Reconstruction of the proximal humerus after wide resection of tumours,” J. Bone Joint Surg. Brit. Vol., 84, No. 7, 1004-1008 (2002).

    Article  CAS  Google Scholar 

  4. Van de Sande, M. A. J., Dij kstra, P. D., and Taminiau, A. H. M., “Proximal humerus reconstruction after tumour resection: Biological versus endoprosthetic reconstruction,” Int. Orthopaed., 35, No. 9, 1375-1380 (2011).

  5. Mok, S. W. et al., “From the printer: Potential of three-dimensional printing for orthopaedic applications,” J. Orthopaed. Transl., 6, 42-49 (2016).

    Article  Google Scholar 

  6. Pearl, M. L., “Proximal humeral anatomy in shoulder arthroplasty: Implications for prosthetic design and surgical technique,” J. Shoulder Elbow Surg., 14, No. 1, 99-104 (2005).

    Article  Google Scholar 

  7. Peretyaka, A. P. and Maykov, S. V., “Results of primary and revision reverse shoulder arthroplasty,” Traumatol. Orthoped. Russ., 18, No. 4, 93-98 (2012).

    Article  Google Scholar 

  8. Murylev, V., Elizarov, P., Lychagin, A., Rukin, Ya., Muzychenkov, A., and Rubin, G., “Experience with endoprosthetic shoulder joint replacement with different implants,” The Doctor, 1, 61-66 (2016).

  9. D’Arienzo, A., Ipponi, E., Ruinato, A.D., De Franco, S., Colangeli, S., Andreani, L., and Capanna, R., “Proximal humerus reconstruction after tumor resection: An overview of surgical management,” Adv. Orthoped., 2021, 16 (2021).

    Article  Google Scholar 

  10. Sufiiarov, V. S. et al., “Design and mechanical properties simulation of graded lattice structures for additive manufacturing endoprostheses,” Mech. Adv. Mat. Struct., 28, No. 16, 1656-1662 (2021).

    Article  Google Scholar 

  11. Li, Z., Wang, C., Li, C., Wang, Z., Yang, F., Liu, H., Qin, Y., and Wang, J., “What we have achieved in the design of 3D printed metal implants for application in orthopedics? Personal experience and review,” Rapid Prototyp. J., 24, No. 8, 1365-1379 (2018).

    Article  Google Scholar 

  12. Kohlhof, H. et al., “Reconstruction of tibial metaphyseal defects with artificial components in revision arthroplasty (GenuX MK System),” Operative Orthopadie und Traumatologie, 32, No. 4, 284-297 (2020).

    Article  CAS  Google Scholar 

  13. Javaid, M. and Haleem, A., “Additive manufacturing applications in medical cases: A literature based review,” Alexandria J. Med., 54, No. 4, 411-422 (2018).

    Article  Google Scholar 

  14. Mroczkowski, M. and Wilex, M., Initial Fixation of the Trabecular Metal Reverse Shoulder Glenoid Base Implant, Zimmer (2008).

  15. Liu, Y., Rath, B., Tingart, M., and Eschweiler, J., “Role of implants surface modification in osseointegration: A systematic review,” J. Biomed. Mat. Res. Part A, 108, No. 3, 470-484 (2020).

    Article  CAS  Google Scholar 

  16. Fradique, R. et al., “Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping,” J. Mat. Sci.: Mat. Med., 27, No. 4, 1-14 (2016).

    CAS  Google Scholar 

  17. Shevtsov, M., Gavrilov, D., Yudintceva, N., Zemtsova, E., Arbenin, A., Smirnov, V., Voronkina, I., Adamova, P., Blinova, M., Mikhailova, N. et al., “Protecting the skin-implant interface with transcutaneous silver-coated skin-and-bone-integrated pylon in pig and rabbit dorsum models,” J. Biomed. Mat. Res. Part B: Appl. Biomat., 109, No. 4, 584-595 (2021).

    Article  CAS  Google Scholar 

  18. Zhang, B. G. X. et al., “Bioactive coatings for orthopaedic implants – Recent trends in development of implant coatings,” Int. J. Mol. Sci., 15, No. 7, 11878-11921 (2014).

    Article  Google Scholar 

  19. Albrektsson, T. and Johansson, C., “Osteoinduction, osteoconduction and osseointegration,” Europ. Spine J., 10, No. 2, 96-101 (2001).

    Google Scholar 

  20. Narra, S. P. et al., “Additive manufacturing in total joint arthroplasty,” Orthoped. Clin. North Amer., 50, No. 1, 13 (2019).

  21. Wodarski, P. et al., “Wyznaczanie obciążeń w stawie ramiennym z wykorzystaniem przestrzennego matematycznego modelu kończyny gornej,” Modelowanie Inżynierskie, 29, No. 60, 74-79 (2016).

    Google Scholar 

  22. Dumas, M., Terriault, P., and Brailovski, V., “Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials,” Mat, Design, 121, 383-392 (2017).

    Article  CAS  Google Scholar 

  23. Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., and Yan, C., “3D-printed cellular structures for bone biomimetic implants,” Add. Manufact., 15, 93-101 (2017).

    CAS  Google Scholar 

  24. Simoes, J. A. and Marques, A. T., “Design of a composite hip femoral prosthesis,” Mat. Design., 26, No. 5, 391-401 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sinegub.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 56, No. 3, May-Jun., 2022, pp. 33-36.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinegub, A.V., Suvorov, V.A., Gavrilov, D.V. et al. Comparative Analysis of the Stress–Strain State of a Lightweight 3D-Printed Shoulder Implant. Biomed Eng 56, 194–197 (2022). https://doi.org/10.1007/s10527-022-10196-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-022-10196-1

Navigation