Skip to main content
Log in

Robotic Systems in Surgery

  • Published:
Biomedical Engineering Aims and scope

Results of studies showing that surgery using the da Vinci robot (Intuitive Surgical, USA) has advantages over conventional methods for the radical treatment of prostate cancer are presented. Current information on robotic technology in medicine has been gathered and presented, using radical prostatectomy as an example. The advantages, drawbacks, and proposed pathways to improving the most widely used surgical system are discussed. Conclusions are drawn with respect to the prospects of introduction of the principle of telemedicine into surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pushkar’, D. Yu., Govorov, A. V., Vasil’ev, A. O., Kolontarev, K. B., Prilepskaya, E. A., Kovylina, M. V., Sadchenko, A. V., and Sidorenko, A. V., “The Moscow program for the early diagnosis and treatment of prostate cancer,” Meditsina, No. 27, 677-686 (2019).

  2. Ballantyne, G. H., and Moll, F., “The da Vinci telerobotic surgical system: The virtual operative field and telepresence surgery,” Surg. Clin. North Am., 6, No. 83, 1293-1304 (2003).

    Article  Google Scholar 

  3. Pushkar’, D. Yu., D’yakov, V. V., Kotenko, D. V., and Vasil’ev, A. O., “Comparison of functional outcomes after radial retropubic and robotic-assisted prostatectomy performed by a nerve-sparing method by surgeons with experience of more than 1000 operations,” Urologiya, No. 1, 50-53 (2017).

  4. Akand, M., Celik, O., Avci, E., Duman, I., and Erdogru, T., “Open, laparoscopic and robotic-assisted laparoscopic radical prostatectomy: Comparative analysis of operative and pathologic outcomes for three techniques with a single surgeon’s experience,” Eur. Rev. Med. Pharmacol. Sci., 4, No. 19, 525-531 (2015).

    Google Scholar 

  5. Dragan, I., Sue, M. E., Christie, A. A., Jae, H. J., Declan, M., and Frydenberg, M., “Laparoscopic and robotic-assisted vs open radical prostatectomy for the treatment of localized prostate cancer: A Cochrane systematic review,” Cochrane Database Syst. Rev., No. 17, 98-104 (2017).

    Google Scholar 

  6. Atallah, S., Parra-Davila, E., Melani, A. G., Romagnolo, L. G., Larach, S. W., and Marescaux, J., “Robotic-assisted stereotactic real-time navigation: Initial clinical experience and feasibility for rectal cancer surgery,” Tech. Coloproctol., 1, No. 23, 53-63 (2019).

    Article  Google Scholar 

  7. Tobis, S., Knopf, J., Silvers, C., Yao, J., Rashid, H., Wu, G., and Golijanin, D., “Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: Initial clinical experience for renal cortical tumors,” J. Urol., 1, No. 186, 47-52 (2011).

    Article  Google Scholar 

  8. Autorino, R., Zargar, H., and White, W. M., “Current applications of near-infrared fluorescence imaging in robotic urologic surgery: A systematic review and critical analysis of the literature,” Urology, 4, No. 84, 751-752 (2014).

    Article  Google Scholar 

  9. Gorpas, D., Phipps, J., Ma, D., Dochow, C., Yankelevich, D., Sorger, J., Popp, J., Bewley, A., Gandour-Edwards, R., Marcu, L., and Farwell, D. G., “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep., 1, No. 9, 1187-1189 (2019).

    Article  Google Scholar 

  10. Alhossaini, R. M., Altamran, A. A., Choi, S., Roh, C. K., Seo, W. J., Cho, M., and Hyung, W. J., “Similar operative outcomes between the da Vinci Xi and da Vinci Si systems in robotic gastrectomy for gastric cancer,” J. Gastric Cancer, 2, No. 19, 165-170 (2019).

    Article  Google Scholar 

  11. Rassweiler, J. J., Goezen, A. S., Rassweiler-Seyfried, M. C., Liatsikos, E., Bach, T., Stolzenburg, J. U., and Klein, J., “Der Roboter in der Urologie – Eine Analyse aktueller und Zukünftiger Gerätegenerationen,” Der Urologe, 9, No. 57, 1075-090 (2018).

    Article  Google Scholar 

  12. Francis, P., Eastwood, K. W., Bodani, V., Looi, T., and Drake, J. M., “Design, modelling and teleoperation of a 2 mm diameter compliant instrument for the da Vinci platform,” Ann. Biomed. Eng., 46, 1437-1449 (2018).

    Article  CAS  Google Scholar 

  13. Abiri, A., Askari, S. J., Tao, A., Juo, Y. Y., Dai, Y., Pensa, J., and Grundfest, W., “Suture breakage warning system for robotic surgery,” IEEE Trans. Biomed. Eng., 4, No. 66, 1165-1171 (2019).

    Article  Google Scholar 

  14. Saracino, A., Deguet, A., Staderini, F., Boushaki, M. N., Cianchi, F., Menciassi, A., and Sinibaldi, E., “Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation and incision tasks,” Int. J. Med. Robot, 4, No. 15, 1-13 (2019).

    Google Scholar 

  15. Patel, H. R., Linares, A., and Joseph, J. V., “Robotic and laparoscopic surgery: Cost and training,” Surg. Oncol., 3, No. 18, 242-246 (2009).

    Article  Google Scholar 

  16. Abiri, A., Tao, A., LaRocca, M., Guan, X., Askari, S. J., Bisley, J. W., and Grundfest, W. S., “Visual-perceptual mismatch in robotic surgery,” Surg. Endosc., 8, No. 31, 3271-3278 (2016).

    Google Scholar 

  17. Meccariello, G., Faedi, F., AlGhamdi, S., Montevecchi, F., Firinu, E., Zanotti, C., and Vicini, C., “An experimental study about haptic feedback in robotic surgery: May visual feedback substitute tactile feedback?” J. Robot. Surg., 1, No. 10, 57-61 (2015).

    Google Scholar 

  18. McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J. A., Lilavois, M., and Kuchenbecker, K. J., “Tool contact acceleration feedback for telerobotic surgery,” IEEE Transa. Haptics, 3, No. 4, 210-220 (2011).

    Article  Google Scholar 

  19. Sokolov, A. N., Tee, B. C., Bettinger, C. J., Tok, J. B., and Bao, Z., “Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications,” Acc. Chem. Res., 3, No. 45, 361-371 (2011).

    Google Scholar 

  20. Rao, P. P. “Robotic surgery: New robots and finally some real competition!,” World, J. Urol., 4, No. 36, 537-541 (2018).

  21. Lim, J. H., Lee, W. J., Park, D. W., Yea, H. J., Kim, S. H., and Kang, C. M., “Robotic cholecystectomy using Revo-i Model MSR-5000, the newly developed Korean robotic surgical system: A preclinical study,” Surg. Endosc., 8, No. 31, 3391-3397 (2017).

    Article  Google Scholar 

  22. Atallah, S., Parra-Davila, E., and Melani, A. G., “Assessment of the Versius surgical robotic system for dual-field synchronous transanal total mesorectal excision (taTME) in a preclinical model: Will tomorrow’s surgical robots promise newfound options?” Tech. Coloproctol., 5, No. 23, 471-477 (2019).

    Article  Google Scholar 

  23. Fanfani, F., Restaino, S., Gueli Alletti, S., Fagotti, A., Monterossi, G., Rossitto, C., Costantini, B., and Scambia, G., “TELELAP ALF-X robotic-assisted laparoscopic hysterectomy: Feasibility and perioperative outcomes,” Minim. Invasive Gynecol., 6, No. 22, 1011-1017 (2015).

    Article  Google Scholar 

  24. Gosrisirikul, C., Don Chang, K., Raheem, A. A., and Rha, K. H., “New era of robotic surgical systems,” Asian J. Endosc. Surg., 11, No. 4, 291-299 (2018).

    Article  Google Scholar 

  25. Mattheis, S., Hasskamp, P., Holtmann, L., Schäfer, C., Geisthoff, U., Dominas, N., and Lang, S., “Flex robotic system in transoral robotic surgery: The first 40 patients,” Head Neck, 3, No. 39, 471-475 (2016).

    Google Scholar 

  26. Poon, H., Li, C., Gao, W., Ren, H., and Lim, C. M., “Evolution of robotic systems for transoral head and neck surgery,” Oral Oncol., No. 87, 82-88 (2018).

    Article  Google Scholar 

  27. Rassweiler, J. J., Autorino, R., Klein, J., Mottrie, A., Goezen, A. S., Stolzenburg, J. U., and Liatsikos, E., “Future of robotic surgery in urology,” BJU Int., 6, No. 120, 822-841 (2017).

    Article  Google Scholar 

  28. Yi, B., Wang, G., Li, J., Jiang, J., Son, Z., Su, H., and Zhu, S., “The first clinical use of domestically produced Chinese minimally invasive surgical robot system ‘Micro Hand S’,” Surg. Endosc., 6, No. 30, 2649-2655 (2015).

    Google Scholar 

  29. Yi, B., Wang, G., Li, J., Jiang, J., Son, Z., Su, H., and Wang, S., “Domestically produced Chinese minimally invasive surgical robot system ‘Micro Hand S’ is applied to clinical surgery preliminarily in China,” Surg. Endosc., 1, No. 31, 487-493 (2016).

    Google Scholar 

  30. Peters, B. S., Armijo, P. R., Krause, C., Choudhury, S. A., and Oleynikov, D., “Review of emerging surgical robotic technology,” Surg. Endosc., 4, No. 32, 1636-1655 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Gritskov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 55, No. 5, Sep.-Oct., 2021, pp. 47-51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritskov, I.O., Vitoslavskii, A.A., Kryazheva, K.A. et al. Robotic Systems in Surgery. Biomed Eng 55, 365–369 (2022). https://doi.org/10.1007/s10527-022-10137-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-022-10137-y

Navigation