Skip to main content
Log in

Development of Artificial Ventricles for Modeling the Cardiovascular System

  • Published:
Biomedical Engineering Aims and scope

The article presents the results of development and experimental studies of artificial ventricles used for modeling the cardiovascular system. The ventricle is divided into two hemispheres separated by a membrane, ensuring the necessary level of contractility of the artificial ventricle and separating its hydraulic and pneumatic components. The study considered two versions of the ventricle, with mechanical check valves (Vesta Trading, Shcherbinka, Moscow, Russia) and bicuspid artificial valves (ZAO NPP MedEng, Penza, Russia) as aortic and mitral valves. The designed ventricles were compared with a reference, which was represented by a Medos VAD membranous artificial ventricle (Medos Medizintechnik AG, Stolberg, Germany).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller L.W., Guglin M., Rogers J., Circulation, 12, No. 6, 743-748 (2013).

    Article  Google Scholar 

  2. Garbade J., Bittner H.B., Barten M.J., Mohr F.-W., Cardiol. Res. Pract., 2011, Article ID 290561.

  3. Mulloy D.P. et al., J. Thorac. Cardiovasc. Surg., 145, 566-573 (2013).

    Article  Google Scholar 

  4. Nestler F., Bradley A.P., Wilson S.J., Timms D.L., Frazier O.H., Cohn W.E., Artif. Organs, 38, 775-782 (2014).

    Article  Google Scholar 

  5. Gräf F., Finocchiaro T., Laumen M., Mager I., Steinseifer U., Artif. Organs, 39, No. 5, 416-422 (2015).

    Article  Google Scholar 

  6. Petukhov D.S., Selishchev S.V., Telyshev D.V., Med. Tekhn., No. 6, 37-39 (2014).

  7. Selishchev S., Telyshev D., Trends Biomater. Artif. Organs, 29, No. 3 (2015).

  8. Petukhov D.S., Telyshev D.V., Med. Tekhn., No. 6, 44-47 (2014).

  9. Danilov A.A., Mindubaev E.A., Med. Tekhn., No. 6, 27-29 (2014).

  10. Pugovkin A.A., Selishchev S.V., Telyshev D.V., Med. Tekhn., No. 4, 17-20 (2015).

  11. Colacino F.M., Arabia M., Moscato F., Danieli G.A., Med. Eng. Phys., 29, 829-839 (2007).

    Article  Google Scholar 

  12. Timms D., Hayne M., McNeil K., Galbraith A., Artif. Organs, 29, No. 7, 564-572 (2015).

    Article  Google Scholar 

  13. Gwak K.-W., Artif. Organs, 39, No. 4, 309-318 (2015).

    Article  Google Scholar 

  14. Misgeld B.J.E., Rüschen D., Schwandtner S., Heinke S., Walter M., Leonhardt S., Biomed. Signal Proc. Control, 20, 35-44 (2015).

    Article  Google Scholar 

  15. Sumikura H., Homma A., Ohnuma K., Taenaka Y., Takewa Y., Mukaibayashi H., Katano K., Tatsumi E., J. Artif. Organs, 16, No. 2, 138-148 (2013).

    Article  Google Scholar 

  16. Pantalos G.M., Koenig S.C., Gillars K.J., Giridharan G.A., Ewert D.L., ASAIO J., 50, No. 1, 37-46 (2004).

    Article  Google Scholar 

  17. Hudsmith L.E., Petersen S.E., Francis J.M., Robson M.D., Neubauer S., J. Cardiovasc. Magn. Reson., 7, No. 5, 775-782 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Telyshev.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 49, No. 6, Nov.-Dec., 2015, pp. 4-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porphiriev, A.O., Pugovkin, A.A., Selishchev, S.V. et al. Development of Artificial Ventricles for Modeling the Cardiovascular System. Biomed Eng 49, 331–334 (2016). https://doi.org/10.1007/s10527-016-9560-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-016-9560-z

Keywords

Navigation