Skip to main content

Development of a Computational Simulator of the Physiological Control of Ventricular Assist Devices (VADs)

  • Conference paper
  • First Online:
IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering (CLAIB 2022, CBEB 2022)

Abstract

Congestive Heart Failure (CHF) is a significant global health issue and considered the most debilitating form of Heart Failure with the heart unable to efficiently pump enough blood to the body, resulting in a high risk of mortality. Left Ventricular Assist Devices (LVADs) are utilized for providing mechanical circulatory assistance for patients with CHF. LVADs can generate pulsatile or continuous flows. Continuous flow LVADs may induce a more physiological flow pattern with some degree of pulsatility when the device is operated using a physiological type of controller. We present a computational simulator that can be used to compare hemodynamic responses of a simulated patient implanted with a LVAD, operated with or without a physiological controller. The computational simulator described here includes: (i) simulations of the patient’s condition; (ii) mathematical models of the estimators and sensors; and (iii) LVAD physiological control algorithms. The application of the simulator allowed us to investigate the performance of physiological control strategies considering various scenarios for LVAD applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savarese, G., Becher, P.M., Lund, L.H., Seferovic, P., Rosano, G.M., Coats, A.J.: Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res. 118(17), 3272–3287 (2022)

    Article  Google Scholar 

  2. Zipes, D.P., Libby, P., Bonow, R.O., Mann, D.L., Tomaselli, G.F.: Braunwald’s heart disease E-Book: a textbook of cardiovascular medicine. Elsevier Health Sciences (2018)

    Google Scholar 

  3. Mantha, A., Lee, R.O., Wolfson, A.M.: Patient selection for heart transplant: balancing risk. Curr. Opin. Organ Transplant. 27(1), 36–44 (2022)

    Article  Google Scholar 

  4. Yuzefpolskaya, M., Schroeder, S.E., Houston, B.A., Robinson, M.R., Gosev, I., Reyentovich, A., D’Alessandro, D.A.: The society of thoracic surgeons intermacs 2022 annual report: focus on the 2018 heart transplant allocation system. Ann. Thoracic Surg. 115(2), 311–327 (2023)

    Article  Google Scholar 

  5. Stephens, A.F., Gregory, S.D., Burrell, A.J., Marasco, S., Stub, D., Salamonsen, R.F.: Physiological principles of starling-like control of rotary ventricular assist devices. Expert Rev. Med. Dev. 17(11), 1169–1182 (2020)

    Article  Google Scholar 

  6. Stevens, M.C., Stephens, A., AlOmari, A.H.H., Moscato, F.: Physiological control. In: Mechanical Circulatory and Respiratory Support, pp. 627–657. Academic Press (2018)

    Google Scholar 

  7. Pauls, J.P., Stevens, M.C., Bartnikowski, N., Fraser, J.F., Gregory, S.D., Tansley, G.: Evaluation of physiological control systems for rotary left ventricular assist devices: an in-vitro study. Ann. Biomed. Eng. 44, 2377–2387 (2016)

    Article  Google Scholar 

  8. Doshi, D., Burkhoff, D.: Cardiovascular simulation of heart failure pathophysiology and therapeutics. J. Cardiac Fail. 22(4), 303–311 (2016)

    Article  Google Scholar 

  9. Bronicki, R.A., et al.: The cardiovascular system in severe sepsis: insight from a cardiovascular simulator. Pediatr. Crit. Care Med. 23(6), 464–472 (2022)

    Article  Google Scholar 

  10. Guyton, A.C.: Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol. Rev. 35(1), 123–129 (1955)

    Article  Google Scholar 

  11. Guyton, A.C., Pl, C.: Pressure-volume curves of the arterial and venous systems in live dogs. Am. J. Physiol. 184(2), 253–258 (1956)

    Article  Google Scholar 

  12. Owen, B., Bojdo, N., Jivkov, A., Keavney, B., Revell, A.: Structural modelling of the cardiovascular system. Biomech. Model. Mechanobiol. 17(5), 1217–1242 (2018)

    Article  Google Scholar 

  13. Sagawa, K., Lie, R.K., Schaefer, J.: Translation of Otto frank’s paper” Die Grundform des arteriellen Pulses” zeitschrift für biologie 37: 483–526 (1899). J. Mol. Cell. Cardiol. 22(3), 253–254 (1990)

    Article  Google Scholar 

  14. Frank, O.: Grundform des Pulses. Z. Biol. 37, 483–526 (1899)

    Google Scholar 

  15. Stergiopulos, N., Westerhof, B.E., Westerhof, N.: Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. Heart Circulat. Physiol. 276(1), H81–H88 (1999)

    Article  Google Scholar 

  16. Burkhoff, D.: Brief history of cardiovascular modeling: insights into pathophysiology and therapeutics. cardiovascular simulation in clinical research and practice (2015)

    Google Scholar 

  17. Torres, D.S., Mazzetto, M., Cestari, I.A.: A novel automated simulator of pediatric systemic circulation: design and applications. Biomed. Signal Process. Control 70, 102926 (2021). https://doi.org/10.1016/j.bspc.2021.102926

    Article  Google Scholar 

  18. Melo, T.R., Neto, J.S.R., Cestari, I.A., Lima, A.M.N.: Feedback controller for restoring the basal hemodynamic condition with a rotary blood pump used as left ventricular assist device. Biomed. Sign. Process. Control 62, 102–136 (2020). https://doi.org/10.1016/j.bspc.2020.102136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, B.J., Cestari, I.A. (2024). Development of a Computational Simulator of the Physiological Control of Ventricular Assist Devices (VADs). In: Marques, J.L.B., Rodrigues, C.R., Suzuki, D.O.H., Marino Neto, J., García Ojeda, R. (eds) IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering. CLAIB CBEB 2022 2022. IFMBE Proceedings, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-031-49401-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49401-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49400-0

  • Online ISBN: 978-3-031-49401-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics