Skip to main content
Log in

Efficacy of biocontrol of the yellow tea thrips and the Kanzawa spider mite with the generalist phytoseiid mite Euseius sojaensis differs between grape cultivars with different leaf morphological traits

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Euseius sojaensis (Ehara) is an effective indigenous predator of multiple arthropod pests in orchards in Japan. Population increases of this generalist phytoseiid mite correspond to those of the most important vineyard pest, Scirtothrips dorsalis Hood. However, the efficacy of biocontrol by it had not been evaluated. Here, we examined the biocontrol of S. dorsalis and Tetranychus kanzawai Kishida by E. sojaensis on two table grape cultivars, less hairy cultivar ‘Pione’ and hairy cultivar ‘Shine Muscat’. In greenhouse experiments, phytoseiid populations were larger, pest populations were smaller, and the incidence of fruit injury caused by S. dorsalis was significantly lower in E. sojaensis-release plots than in no-release plots. Densities of S. dorsalis larvae and T. kanzawai and the incidence of fruit injury were higher in hairy cultivar than in less hairy cultivar. These results suggest that E. sojaensis can control S. dorsalis and T. kanzawai populations simultaneously, but to different degrees between the cultivars. In laboratory experiments, E. sojaensis consumed fewer pests on leaf discs of hairy cultivar than on those of less hairy cultivar. The greater trichome density may hinder these large phytoseiid mites and thus reduce biocontrol efficacy. The interactions among phytoseiid mites and pests via plant leaf structure need to be clarified for successful biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Agrawal AA, Karban R (1997) Domatia mediate plant-arthropod mutualism. Nature 387:562–563

    Article  CAS  Google Scholar 

  • Arai T, Toyama M, Ashihara W (2016) Occurrence of Scirtothrips dorsalis and insecticide spraying reduced program using reflective sheet mulching in grapevine ‘Shine Muscat.’ Bull NARO Inst Fruit Tree Sci 21:31–42

    Google Scholar 

  • Barba P, Loughner R, Wentworth K, Nyrop JP, Loeb GM, Reisch BI (2019) A QTL associated with leaf trichome traits has a major influence on the abundance of the predatory mite Typhlodromus pyri in a hybrid grapevine population. Hort Res 6:87

    Article  Google Scholar 

  • Barbosa P (ed) (1998) Conservation biological control. Academic Press, San Diego

  • Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Exp Appl Acarol 20:1–22

    Article  Google Scholar 

  • Cruz-Miralles J, Cabedo-López M, Pérez-Hedo M, Flors V, Jaques JA (2019) Zoophytophagous mites can trigger plant-genotype specific defensive responsed affecting potential prey beyond predation: the case of Euseius stipulatus and Tetranychus urticae in citrus. Pest Manag Sci 75:1962–1970

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Miralles J, Cabedo-López M, Guzzo M, Ibáñez-Gual V, Flors V, Jaques JA (2021) Plant-feeding may explain why the generalist predator Euseius stipulatus does better on less defended citrus plants but Tetranychus-specialists Neoseiulus californicus and Phytoseiulus persimilis do not. Exp Appl Acarol 83:167–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Duso C (1992) Role of the predatory mites Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. III. Influence of variety characteristics on the success of A. aberrans and T. pyri releases. J Appl Entomol 114:455–462

    Article  Google Scholar 

  • Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiid released (Acari: Phytoseiidae). Exp Appl Acarol 23:741–763

    Article  CAS  PubMed  Google Scholar 

  • Duso C, Pozzebon A, Capuzzo C, Bisol PM, Otto S (2003) Grape downy mildew spread and mite seasonal abundance in vineyards: evidence for the predatory mites Amblyseius andersoni and Typhlodromus pyri. Biol Control 27:229–241

    Article  Google Scholar 

  • Duso C, Kreiter S, Tixier MS, Pozzebon A, Malagnini V (2010) Biological control of mites in European vineyards and the impact of natural vegetation. In: Trends in acarology—Proceedings of the 12th international congress, 2006, Amsterdam, pp 399–407

  • English-Loeb G, Norton AP, Walker MA (2002) Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding. Entomol Exp Appl 104:307–319

    Article  Google Scholar 

  • Grostal P, O’Dowd DJ (1994) Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97:308–315

    Article  PubMed  Google Scholar 

  • Janssen A, van Rijn PCJ (2021) Pesticides do not significantly reduce arthropod pest densities in the presence of natural enemies. Ecol Lett 24:2010–2024

    Article  PubMed  PubMed Central  Google Scholar 

  • Karban R, English-Loeb G, Walker MA, Thaler J (1995) Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp Appl Acarol 19:189–197

    Article  Google Scholar 

  • Kasai A, Yano S, Takafuji A (2005) Prey-predator mutualism in a tritrophic system on a camphor tree. Ecol Res 20:163–166

    Article  Google Scholar 

  • Kreiter S, Tixier MS, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environ Entomol 31:648–660

    Article  Google Scholar 

  • Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:119–131

    Article  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • Loughner R, Goldman K, Loeb G, Nyrop J (2008) Influence of leaf trichomes on predatory mite (Typhlodromus pyri) abundance in grape varities. Exp Appl Acarol 45:111–122

    Article  CAS  PubMed  Google Scholar 

  • Loughner R, Wentworth K, Loeb G, Nyrop J (2010) Leaf trichomes influence predatory mite densities through dispersal behavior. Entomol Exp Appl 134:78–88

    Article  Google Scholar 

  • Maleknia B, Fathipour Y, Soufbaf M (2016) How greenhouse cucumber cultivars affect population growth and two-sex life table parameters of Tetranychus urticae (Acari: Tetranychidae). Int J Acarol 42:70–78

    Article  Google Scholar 

  • Masui S, Katayama H (2019) Effectiveness of different types of tree pollen as food for Amblyseius eharai and Euseius sojaensis (Acari: Phytoseiidae). Jpn J Appl Entomol Zool 63:207–214

    Article  Google Scholar 

  • McMurtry JA (1992) Dynamics and potential impact of ‘generalist’ phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp Appl Acarol 14:371–382

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Holstein-Saj RV, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. BioControl 55:387–398

    Article  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Michalska K (2003) Climbing of leaf trichomes by eriophyid mites impedes their location by predators. J Insect Behav 16:833–844

    Article  Google Scholar 

  • Mochizuki M (2014) Seasonal occurrence and species composition of phytoseiid mites and phytophagous thrips on forage soybean with a view to conservation of phytoseiid mites in vineyards. J Acarol Soc Jpn 23:79–89

    Article  Google Scholar 

  • Mochizuki M, Toda S (2015) Reduction of grape berry damage caused by the yellow tea thrips, Scirtothrips dorsalis Hood, in espalier grapevine trees mulched with reflective sheets. Ann Rep Kansai Plant Prot Soc 57:63–67

  • Norton AP, English-Loeb G, Belden E (2001) Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators. Oecologia 126:535–542

    Article  PubMed  Google Scholar 

  • O’Dowd DJ, Willson MF (1991) Associations between mites and leaf domatia. Trends Ecol Evol 6:179–182

    Article  PubMed  Google Scholar 

  • Osakabe M (1988) Relationships between food substances and developmental success in Amblyseius sojaensis Ehara (Acarina: Phytoseiidae). Appl Entomol Zool 23:45–51

    Article  Google Scholar 

  • Osakabe M, Inoue K, Ashihara W (1987) Effect of Amblyseius sojaensis Ehara (Acarina: Phytoseiidae) as a predator of Panonychus citri (McGregor) and Tetranychus kanzawai Kishida (Acarina: Tetranychidae). Appl Entomol Zool 22:594–599

    Article  Google Scholar 

  • Ozawa Y, Yano S (2008) Pearl bodies of Cayratia japonica (Thunb.) Gagnep. (Vitaceae) as alternative food for a predatory mite Eueseius sojaensis (Ehara) (Acari: Phytoseiidae). Ecol Res 24:257–262

    Article  Google Scholar 

  • Pozzebon A, Loeb GM, Duso C (2009) Grape powdery mildew as a food source for generalist predatory mites occurring in vineyards: effects on life history traits. Ann Appl Biol 155:81–89

    Article  Google Scholar 

  • Roda A, Nyrop J, Dicke M, English-Loeb G (2000) Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia 125:428–435

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Nyrop J, English-Loeb G, Dicke M (2001) Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia 129:551–560

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Nyrop J, English-Loeb G (2003) Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29:193–211

    Article  CAS  PubMed  Google Scholar 

  • Romero GQ, Benson WW (2004) Leaf domatia mediate mutualism between mites and a tropical tree. Oecologia 140:609–616

    Article  PubMed  Google Scholar 

  • Romero GQ, Benson WW (2005) Biotic interactions of mites, plants and leaf domatia. Curr Opin Plant Biol 8:436–440

    Article  CAS  PubMed  Google Scholar 

  • Sabelis MW, van Rijn PCJ (1997) Predation by insects and mites. In: Lewis T (ed) Thrips as crop pests. CAB International, Oxon, pp 259–354

    Google Scholar 

  • Saito Y, Osakabe M (1992) A new fixation method for preparing mite specimens for optical and SEM microscopic observations. Appl Entomol Zool 27:427–436

    Article  Google Scholar 

  • Schmidt RA (2014) Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62:1–17

    Article  PubMed  Google Scholar 

  • Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116:807–817

    Article  Google Scholar 

  • Shibao M (1996) Damage analysis of chillie thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) on grape. Jpn J Appl Entomol Zool 40:293–297

    Article  Google Scholar 

  • Shibao M (1997) Effects of insecticide application on population density of the chillie thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) on grape. Appl Entomol Zool 32:512–514

    Article  CAS  Google Scholar 

  • Shibao M, Ehara S, Hosomi A, Tanaka H (2004) Seasonal fluctuation in population density of phytoseiid mites and the yellow tea thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) on grape, and predation of the thrips by Euseius sojaensis (Ehara) (Acari: Phytoseiidae). Appl Entomol Zool 39:727–730

    Article  Google Scholar 

  • Shibao M, Ehara S, Hosomi A, Tanaka H (2006) Effect of insecticide application on the population density of yellow tea thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) and Euseius sojaensis (Ehara) (Acari: Phytoseiidae) on grapes. Jpn J Appl Entomol Zool 50:247–252

    Article  CAS  Google Scholar 

  • Stavrinides MC, Skirvin DJ (2003) The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bull Entomol Res 93:343–350

    Article  PubMed  Google Scholar 

  • Sudo M, Osakabe M (2011) Do plant mites commonly prefer the underside of leaves? Exp Appl Acarol 55:25–38

    Article  PubMed  Google Scholar 

  • Sudo M, Nishida S, Itioka T (2010) Seasonal fluctuations in foliar mite populations on Viburnum erosum Tunb. var. punctatum Franch. et Sav. (Adoxaceae) and sympatic shrubs in temperate secondary forests in western Japan. Appl Entomol Zool 45:405–415

    Article  Google Scholar 

  • Tixier MS, Kreiter S, Auger P, Weber M (1998) Colonization of languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): influence of wind and crop environment. Exp Appl Acarol 22:523–542

    Article  Google Scholar 

  • Toyoshima S, Kishimoto H, Amano H (2013) Phytoseiid mite portal. http://phytoseiidae.acarology-japan.org/. Accessed 16 Oct 2022

  • Tsuchida Y, Masui S (2020a) Effects of providing pollen to Euseius sojaensis or Amblyseius eharai (Acari: Phytoseiidae) on populations of the pink citrus rust mite, Aculops pelekassi (Acari: Eriophyidae). Appl Entomol Zool 55:241–248

    Article  CAS  Google Scholar 

  • Tsuchida Y, Masui S (2020b) Biological control of pink citrus rust mite, Aculops pelekassi (Acari: Eriophyidae) by Euseius sojaensis (Acari: Phytoseiidae) in commercial citrus orchards. Jpn J Appl Entomol Zool 64:165–174

    Article  Google Scholar 

  • Tsuchida Y, Masui S (2021a) Suppressive effect of Euseius sojaensis or Amblyseius eharai (Acari: Phytoseiidae) on Tetranychus kanzawai (Acari: Tetranychidae) on Japanese pear. Jpn J Appl Entomol Zool 65:99–108

    Article  Google Scholar 

  • Tsuchida Y, Masui S (2021b) Biological control of the Japanese pear rust mite, Eriophyes chibaensis (Acari: Eriophyidae) and the Kanzawa spider mite, Tetranychus kanzawai (Acari: Tetranychidae) with Euseius sojaensis (Acari: Phytoseiidae). Exp Appl Acarol 84:673–686

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida Y, Masui S, Kasai A (2022) Effects of intraguild predation and cannibalism in two generalist phytoseiid species on prey density of the pink citrus rust mite in the presence of high-quality food. BioControl 67:287–296

    Article  CAS  Google Scholar 

  • van Haren RJF, Steenhuis MM, Sabelis MW, de Ponti OMB (1987) Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Exp Appl Acarol 3:115–121

    Article  Google Scholar 

  • Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Annu Rev Entomol 41:101–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hidenari Kishimoto of the NARO Institute of Fruit Tree and Tea Science for his advice on the identification of phytoseiid species.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

YT and SM conceived and designed the experiments. YT performed the experiments. YT analyzed the data and wrote the first draft of the manuscript. SM commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuta Tsuchida.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

This research did not involve any studies with human participants or animals (vertebrates).

Consent for publication

All authors consent to publication.

Additional information

Handling Editor: Marta Montserrat

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchida, Y., Masui, S. Efficacy of biocontrol of the yellow tea thrips and the Kanzawa spider mite with the generalist phytoseiid mite Euseius sojaensis differs between grape cultivars with different leaf morphological traits. BioControl 68, 425–434 (2023). https://doi.org/10.1007/s10526-023-10201-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-023-10201-w

Keywords

Navigation