Skip to main content

Advertisement

Log in

The potential use of nanozyme in aging and age‐related diseases

  • Review ARticle
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Afanas’ev I (2010) Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR. Aging Dis 1(2):75–88

    PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Fatemi SN, Ghaheri M, Rezvani A, Khezri DA, Natami M, Yasamineh S, Gholizadeh O, Bahmanyar Z (2023) An overview of the role of Niemann-pick C1 (NPC1) in viral infections and inhibition of viral infections through NPC1 inhibitor. Cell Communication and Signaling 21(1):1–16

    Article  CAS  Google Scholar 

  • Aldrich JL, Panicker A, Ovalle R Jr, Sharma B (2023) Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals 16(7):1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, J., S. N. Elahi, A. Ali and H. Waseem (2021). "Unveiling the Potential Role of Nanozymes in Combating the COVID-19 Outbreak." 11(5).

  • Alian RS, Dziewięcka M, Kędziorski A, Majchrzycki Ł, Augustyniak M (2021) Do nanoparticles cause hormesis? Early physiological compensatory response in house crickets to a dietary admixture of GO, Ag, and GOAg composite. Sci Total Environ 788:147801

    Article  ADS  Google Scholar 

  • Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V (2021) A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 192:113494

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Jia X, Zhen W, Cheng W, Jiang X (2018) A facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranostics. J Am Chem Soc 140(1):106–109

    Article  CAS  PubMed  Google Scholar 

  • Becker F, Rudolph KL (2021) Targeting enzyme aging. Science 371(6528):462–463

    Article  ADS  CAS  PubMed  Google Scholar 

  • Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P (2019) Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal 30(2):251–294

    Article  CAS  PubMed  Google Scholar 

  • Brynskikh AM, Zhao Y, Mosley RL, Li S, Boska MD, Klyachko NL, Kabanov AV, Gendelman HE, Batrakova EV (2010) Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5(3):379–396

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Li Y, Zhang J, Tang N, Bao X, Liu Z (2023) New horizons for therapeutic applications of nanozymes in oral infection. Particuology 80:61–73

    Article  CAS  Google Scholar 

  • Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, Gaetano C (2013) Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci 14(9):17643–17663

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran A, M. d. P. S. Idelchik and J. A. Melendez, (2017) Redox control of senescence and age-related disease. Redox Biol 11:91–102

    Article  CAS  PubMed  Google Scholar 

  • Choudhury SR, Ordaz J, Lo C-L, Damayanti NP, Zhou F, Irudayaraj J (2017) From the cover: zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto-and epigenetic toxicity. Toxicol Sci 156(1):261–274

    PubMed  Google Scholar 

  • Cong W, Meng L, Pan Y, Wang H, Zhu J, Huang Y, Huang Q (2023) Mitochondrial-mimicking nanozyme-catalyzed cascade reactions for aging attenuation. Nano Today 48:101757

    Article  CAS  Google Scholar 

  • Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D (2022) Epigenetic regulation of cellular senescence. Cells 11(4):672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C (2021) Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. Nanomicro Lett 13(1):193

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Faghihkhorasani A, Dalvand A, Derafsh E, Tavakoli F, Younis NK, Yasamineh S, Gholizadeh O, Shokri P (2023) The role of oncolytic virotherapy and viral oncogenes in the cancer stem cells: a review of virus in cancer stem cells. Cancer Cell Int 23(1):250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464

    Article  ADS  CAS  PubMed  Google Scholar 

  • Farahmand SK, Samini F, Samini M, Samarghandian S (2013) Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 14:63–71

    Article  CAS  PubMed  Google Scholar 

  • Fu, S., C. Li, W. Yang, H. Chen, Y. Wang, Y. Zhu, J. Zhu, B. Zhang, X. Xia and J. C. Zheng (2023). "Insulin‐incubated palladium clusters alleviate Alzheimer's disease‐like phenotypes in a preclinical mouse model." MedComm 4(4).

  • Gao L, Yan X (2016) Nanozymes: an emerging field bridging nanotechnology and biology. Science China Life Sciences 59(4):400

    Article  PubMed  Google Scholar 

  • Gao N, Dong K, Zhao A, Sun H, Wang Y, Ren J, Qu X (2016) Polyoxometalate-based nanozyme: design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res 9:1079–1090

    Article  CAS  Google Scholar 

  • Gao S, Lin H, Zhang H, Yao H, Chen Y, Shi J (2019) Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Advanced Science 6(3):1801733

    Article  PubMed  Google Scholar 

  • Gedda MR, Babele PK, Zahra K, Madhukar P (2019) Epigenetic aspects of engineered nanomaterials: is the collateral damage inevitable? Frontiers in Bioengineering and Biotechnology 7:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A (2017) Nanozyme applications in biology and medicine: an overview. Artificial Cells, Nanomedicine, and Biotechnology 45(6):1069–1076

    Article  CAS  Google Scholar 

  • Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S (2022) Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 11(3):552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou W, Ye C, Chen M, Gao W, Xie X, Wu J, Zhang K, Zhang W, Zheng Y, Cai X (2021) Excavating bioactivities of nanozyme to remodel microenvironment for protecting chondrocytes and delaying osteoarthritis. Bioactive Materials 6(8):2439–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Sheng Z, Fang S, Wang Y, Gao D, Zhang P, Gong P, Ma Y, Cai L (2014) Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics 4(2):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D-M, Hsiao J-K, Chen Y-C, Chien L-Y, Yao M, Chen Y-K, Ko B-S, Hsu S-C, Tai L-A, Cheng H-Y (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli, I., V. Leso, L. Fontana and E. J. Calabrese (2018). "Nanoparticle Exposure and Hormetic Dose-Responses: An Update." Int J Mol Sci 19(3).

  • Jia Z, Yuan X, Wei J-A, Guo X, Gong Y, Li J, Zhou H, Zhang L, Liu J (2021) A functionalized octahedral palladium nanozyme as a radical scavenger for ameliorating Alzheimer’s disease. ACS Appl Mater Interfaces 13(42):49602–49613

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48(14):3683–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, Lin Y (2020) When nanozymes meet single-atom catalysis. Angew Chem 132(7):2585–2596

    Article  ADS  Google Scholar 

  • Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M (2023) Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol 97(10):2499–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang T, Guan R, Song Y, Lyu F, Ye X, Jiang H (2015) Cytotoxicity of zinc oxide nanoparticles and silver nanoparticles in human epithelial colorectal adenocarcinoma cells. LWT-Food Science and Technology 60(2):1143–1148

    Article  CAS  Google Scholar 

  • Kapetanaki MG, Mora AL, Rojas M (2013) Influence of age on wound healing and fibrosis. J Pathol 229(2):310–322

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Oh S, Shin YC, Wang C, Kang MS, Lee JH, Yun W, Cho JA, Hwang DY, Han D-W (2020) Au nanozyme-driven antioxidation for preventing frailty. Colloids Surf, B 189:110839

    Article  CAS  Google Scholar 

  • Kitani K (2007) What really declines with age? the hayflick lecture for 2006 35th american aging association. Age 29:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouda K, Iki M (2010) Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J Physiol Anthropol 29(4):127–132

    Article  PubMed  Google Scholar 

  • Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, Soh M, Hyeon T (2018) Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew Chem Int Ed 57(30):9408–9412

    Article  CAS  Google Scholar 

  • Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG (2018) Enhancing and extending biological performance and resilience. Dose-Response 16(3):1559325818784501

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewandowska H, Wojciuk K, Karczmarczyk U (2021) Metal Nanozymes: New Horizons in Cellular Homeostasis Regulation. Appl Sci 11(19):9019

    Article  CAS  Google Scholar 

  • Li J, Zhang Z, Li J, Cun J-E, Pan Q, Gao W, Luo K, He B, Gu Z, Pu Y (2022) Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater 152:495–506

    Article  CAS  PubMed  Google Scholar 

  • Li K, Hu S, Huang J, Shi Y, Lin W, Liu X, Mao W, Wu C, Pan C, Xu Z (2023) Targeting ROS-induced osteoblast senescence and RANKL production by Prussian blue nanozyme based gene editing platform to reverse osteoporosis. Nano Today 50:101839

    Article  CAS  Google Scholar 

  • Li, L. and H. Clevers (2010). "Coexistence of quiescent and active adult stem cells in mammals." Science 327(5965): 542–545.

  • Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, Sun Y, Zhang Q, Yang H, Zhang F (2019) A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem 131(36):12754–12761

    Article  ADS  Google Scholar 

  • Liang, S., X. Tian and C. Wang (2022). "Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie." 15: 6307–6328.

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Shi Z, Su W, Wu J (2022) State of the art and applications in nanostructured biocatalysis. Biotechnol Biotechnol Equip 36(1):118–134

    Article  Google Scholar 

  • Liu, W., Y. Zhang, G. Wei, M. Zhang, T. Li, Q. Liu, Z. Zhou, Y. Du and H. Wei (2023). "Integrated cascade nanozymes with antisenescence activities for atherosclerosis therapy." Angewandte Chemie International Edition: e202304465.

  • Liu X, Gao Y, Chandrawati R, Hosta-Rigau L (2019) Therapeutic applications of multifunctional nanozymes. Nanoscale 11(44):21046–21060

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y (2012) BSA-templated MnO 2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137(19):4552–4558

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu Y, Yuan M, Qiao L, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Ren Z, Zhang J, Chuang C-C, Kandaswamy E, Zhou T, Zuo L (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddela, S., A. Makula and N. Jayarambabu (2017). "Fe3O4 nanoparticles mediated synthesis of novel isatin-dihydropyrimidinone hybrid molecules as antioxidant and cytotoxic agents." Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 17(3): 456–463.

  • Muhammad P, Hanif S, Li J, Guller A, Rehman FU, Ismail M, Zhang D, Yan X, Fan K, Shi B (2022) Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 45:101530

    Article  CAS  Google Scholar 

  • Mytych J, Wnuk M, Rattan SI (2016) Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture. Chemosphere 148:307–315

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nashat N, Haider Z (2021) Therapeutic applications of nanozymes and their role in cardiovascular disease. Int J Nanomater Nanotechnol Nanomedicine 7(1):9–18

    Google Scholar 

  • Nasiri K, Mohammadzadehsaliani S, Kheradjoo H, Shabestari AM, Eshaghizadeh P, Pakmehr A, Alsaffar MF, Al-Naqeeb BZT, Yasamineh S, Gholizadeh O (2023) Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects. Cell Communication and Signaling 21(1):1–15

    Article  Google Scholar 

  • Ortiz GGR, Mohammadi Y, Nazari A, Ataeinaeini M, Kazemi P, Yasamineh S, Al-Naqeeb BZT, Zaidan HK, Gholizadeh O (2023) A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity. Cell Communication and Signaling 21(1):1–16

    Article  Google Scholar 

  • Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, Gholizadeh O (2023) The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Communication and Signaling 21(1):1–26

    Article  Google Scholar 

  • Patil, N. A., W. Gade and D. D. Deobagkar (2016). "Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation." International journal of nanomedicine: 4509–4519.

  • Pn, N., S. Mehla, A. Begum, H. K. Chaturvedi, R. Ojha, C. Hartinger, M. Plebanski and S. K. Bhargava (2023). "Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology." Advanced Healthcare Materials: 2300768.

  • Pogribna M, Hammons G (2021) Epigenetic effects of nanomaterials and nanoparticles. Journal of Nanobiotechnology 19(1):1–18

    Article  Google Scholar 

  • Pole, A., M. Dimri and G. P. Dimri (2016). "Oxidative stress, cellular senescence and ageing." AIMS molecular science 3(3).

  • Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL (2008) A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29(1):117–128

    Article  CAS  PubMed  Google Scholar 

  • Radi R (2018) Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci 115(23):5839–5848

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragg R, Tahir MN, Tremel W (2016) Solids go bio: inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem 2016(13–14):1906–1915

    Article  CAS  Google Scholar 

  • Rattan SI (2015) Hormetins as novel components of cosmeceuticals and aging interventions. Cosmetics 2(1):11–20

    Article  CAS  Google Scholar 

  • Razgonova MP, Zakharenko AM, Golokhvast KS, Thanasoula M, Sarandi E, Nikolouzakis K, Fragkiadaki P, Tsoukalas D, Spandidos DA, Tsatsakis A (2020) Telomerase and telomeres in aging theory and chronographic aging theory. Mol Med Rep 22(3):1679–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M (2022) Nanozymes-recent development and biomedical applications. Journal of Nanobiotechnology 20(1):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O (2023) Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 23(1):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahebhonar, M., M. G. Dehaki, M. H. Kazemi-Galougahi and S. Soleiman-Meigooni (2022). "A comparison of three research methods: logistic regression, decision tree, and random forest to reveal association of type 2 diabetes with risk factors and classify subjects in a military population." Journal of Archives in Military Medicine 10(2).

  • Sahu A, Jeon J, Lee MS, Yang HS, Tae G (2021) Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. Mater Sci Eng, C 119:111596

    Article  CAS  Google Scholar 

  • Savalia K, Manickam DS, Rosenbaugh EG, Tian J, Ahmad IM, Kabanov AV, Zimmerman MC (2014) Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration. Free Radical Biol Med 73:299–307

    Article  CAS  Google Scholar 

  • Shan, J., X. Liu, X. Li, Y. Yu, B. Kong and L. Ren (2023). "Advances in antioxidative nanozymes for treating ischemic stroke." Engineered Regeneration.

  • Sharifi M, Hosseinali SH, Yousefvand P, Salihi A, Shekha MS, Aziz FM, JouyaTalaei A, Hasan A, Falahati M (2020) Gold nanozyme: biosensing and therapeutic activities. Mater Sci Eng, C 108:110422

    Article  CAS  Google Scholar 

  • Shi, F., M. Peng, H. Zhu, H. Li, J. Li, X. Hu, J. Zeng and Z. Yang (2023). "Functional Zonation Strategy of Heterodimer Nanozyme for Multiple Chemiluminescence Imaging Immunoassay." Analytical Chemistry.

  • Shi Y, Li H, Chu D, Lin W, Wang X, Wu Y, Li K, Wang H, Li D, Xu Z (2023b) Rescuing Nucleus Pulposus Cells From Senescence via Dual-Functional Greigite Nanozyme to Alleviate Intervertebral Disc Degeneration. Advanced Science 10(25):2300988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145(6):851–862

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G (2019) A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale 11(9):3855–3863

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2019) Nanomaterials exhibiting enzyme-like properties (nanozymes): current advances and future perspectives. Front Chem 7:46

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisakhtnezhad S, Rahimi M, Mohammadi S (2023) Biomedical applications of MnO2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 163:114833

    Article  CAS  PubMed  Google Scholar 

  • Sthijns MM, Thongkam W, Albrecht C, Hellack B, Bast A, Haenen GR, Schins RP (2017) Silver nanoparticles induce hormesis in A549 human epithelial cells. Toxicol in Vitro 40:223–233

    Article  CAS  PubMed  Google Scholar 

  • Tabish AM, Poels K, Byun H-M, Luyts K, Baccarelli AA, Martens J, Kerkhofs S, Seys S, Hoet P, Godderis L (2017) Changes in DNA methylation in mouse lungs after a single intra-tracheal administration of nanomaterials. PLoS ONE 12(1):e0169886

    Article  PubMed  PubMed Central  Google Scholar 

  • Thao, N. T. M., H. D. K. Do and N. N. Nam (2023). "Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications." 14(5).

  • Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL (2023b) Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. Micromachines 14(5):1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian L, Qi J, Qian K, Oderinde O, Liu Q, Yao C, Song W, Wang Y (2018) Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J Electroanal Chem 812:1–9

    Article  CAS  Google Scholar 

  • Tiganis T (2011) Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci 32(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Vaiserman A, Cuttler JM, Socol Y (2021) Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 22(2):145–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Veal, E., T. Jackson and H. Latimer (2018). "Role/s of ‘antioxidant’enzymes in ageing." Biochemistry and Cell Biology of Ageing: Part I Biomedical Science: 425–450.

  • Villalba-Rodríguez AM, Martínez-Zamudio LY, Martínez SAH, Rodríguez-Hernández JA, Melchor-Martínez EM, Flores-Contreras EA, González-González RB, Parra-Saldívar R (2023) Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes. Top Catal 66(9–12):707–722

    Article  PubMed  Google Scholar 

  • Vincent TL, Alliston T, Kapoor M, Loeser RF, Troeberg L, Little CB (2022) Osteoarthritis pathophysiology: therapeutic target discovery may require a multifaceted approach. Clin Geriatr Med 38(2):193–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Cui Z, Wang X, Sun S, Zhang D, Fu C (2021) Therapeutic applications of nanozymes in chronic inflammatory diseases. Biomed Res Int 2021:1–9

    Google Scholar 

  • Wang H, Wan K, Shi X (2019) Recent advances in nanozyme research. Adv Mater 31(45):1805368

    Article  CAS  Google Scholar 

  • Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorganic Chemistry Frontiers 3(1):41–60

    Article  CAS  Google Scholar 

  • Wang X, Zhong X, Bai L, Xu J, Gong F, Dong Z, Yang Z, Zeng Z, Liu Z, Cheng L (2020) Ultrafine titanium monoxide (TiO1+ x) nanorods for enhanced sonodynamic therapy. J Am Chem Soc 142(14):6527–6537

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu FG (2022) Emerging Single-Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Adv Healthcare Mater 11(6):2101682

    Article  CAS  Google Scholar 

  • Wick G, Jansen-Dürr P, Berger P, Blasko I, Grubeck-Loebenstein B (2000) Diseases of aging. Vaccine 18(16):1567–1583

    Article  CAS  PubMed  Google Scholar 

  • Xiong B, Xu R, Zhou R, He Y, Yeung ES (2014) Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au–Pt nanocomposites. Talanta 120:262–267

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., R. Zhang, H. Zhao, H. Qi, J. Li, J. F. Li, X. Zhou, A. Wang, K. Fan and X. Yan (2022). Bioinspired copper single‐atom nanozyme as a superoxide dismutase‐like antioxidant for sepsis treatment. Exploration, Wiley Online Library.

  • Yasamineh, S., F. J. Mehrabani, E. Derafsh, R. Danihiel Cosimi, A. M. K. Forood, S. Soltani, M. Hadi and O. Gholizadeh (2023). "Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders." Molecular Neurobiology: 1–25.

  • Ye C, Zhang W, Zhao Y, Zhang K, Hou W, Chen M, Lu J, Wu J, He R, Gao W (2022) Prussian Blue Nanozyme Normalizes Microenvironment to Delay Osteoporosis. Adv Healthcare Mater 11(19):2200787

    Article  CAS  Google Scholar 

  • Yun Y, Lu Z, Jiao X, Xue P, Sun W, Qiao Y, Liu Y (2022) Involvement of O2·− release in zearalenone-induced hormesis of intestinal porcine enterocytes: An electrochemical sensor-based analysis. Bioelectrochemistry 144:108049

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li Q, Shan J, Xing J, Liu X, Ma Y, Qian H, Chen X, Wang X, Wu L-M (2023a) Multifunctional two-dimensional Bi2Se3 nanodiscs for anti-inflammatory therapy of inflammatory bowel diseases. Acta Biomater 160:252–264

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zhao Y-X, Gao Y-J, Gao F-P, Fan Y-S, Li X-J, Duan Z-Y, Wang H (2013) Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. Journal of Materials Chemistry B 1(38):5100–5107

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., L. Song and K. Zhang (2023). "Breakthroughs in nanozyme-inspired application diversity." Materials Chemistry Frontiers.

  • Zhang Y, Liu W, Wang X, Liu Y, Wei H (2023b) Nanozyme-Enabled Treatment of Cardio-and Cerebrovascular Diseases. Small 19(13):2204809

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Z, Li X, Wang L, Yin M, Wang L, Chen N, Fan C, Song H (2016) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Adv Mater 28(7):1387–1393

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Guo F, Hou L, Zhao Y, Sun P (2023) Electron transfer-based antioxidant nanozymes: Emerging therapeutics for inflammatory diseases. J Control Release 355:273–291

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wang S, Zhang C, Lin Y, Lv J, Hu S, Zhang S, Li M (2021) Colorimetric determination of amyloid-β peptide using MOF-derived nanozyme based on porous ZnO-Co 3 O 4 nanocages. Microchim Acta 188:1–10

    Article  ADS  Google Scholar 

  • Zhuang J, Fan K, Gao L, Lu D, Feng J, Yang D, Gu N, Zhang Y, Liang M, Yan X (2012) Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol Pharm 9(7):1983–1989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all researchers who contributed to the advancement of science.

Funding

There is no Funding.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. write the original draft. A.G., P.A., B.K., K.A., review and editing. All authors participated in the manuscript in the critical review process of the manuscript and approved the final version.

Corresponding author

Correspondence to Saman Yasamineh.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorgzadeh, A., Amiri, P.A., Yasamineh, S. et al. The potential use of nanozyme in aging and age‐related diseases. Biogerontology (2024). https://doi.org/10.1007/s10522-024-10095-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10522-024-10095-w

Keywords

Navigation