Skip to main content

Advertisement

Log in

Expression and function of vascular endothelial growth inhibitor in aged porcine bladder detrusor muscle cells

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Aging of the bladder detrusor muscle plays an important role in lower urinary tract symptoms in elderly people. Our previous work demonstrated that elderly patients have increased levels of vascular endothelial growth inhibitor (VEGI) in bladder tissue. Therefore, we hypothesized that VEGI may play a role in aging of the bladder detrusor muscle cells. This study aims to develop and characterize primary cultures of aged porcine bladder detrusor muscle cells in order to explore the expression and function of VEGI. Bladder samples from female pigs were divided into two groups: the aged group (Model) and the young group (Control). We confirmed β-galactosidase expression, a marker for senescence, in aged muscle cells (identified by α-smooth muscle actin (α-SMA) staining), but not in the young group. mRNA levels of VEGI-251 and death receptor 3 (DR3) were up-regulated (P < 0.05) and total cell protein levels of VEGI-251, DR3 and nuclear factor-kappa B [NF-κB (p65)], membrane protein levels of DR3, and nuclear protein levels of NF-κB (p65) were significantly higher (P < 0.01) in the Model cells compared to Control cells. In conclusion, we have established a method to culture aged detrusor muscle cells derived from porcine bladder. Higher levels of VEGI-251, DR3 and NF-κB (p65) were observed in the aged cells. VEGI-251 may function by increasing DR3 on cellular membranes and promoting the transfer of NF-κB into the nucleus. This suggests that VEGI may be a target for reversing the aging process of bladder detrusor muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akino H, Chapple CR, McKay N, Cross RL, Murakami S, Yokoyama O, Chess-Williams R, Sellers DJ (2008) Spontaneous contractions of the pig urinary bladder: the effect of ATP-sensitive potassium channels and the role of the mucosa. BJU Int 102:1168–1174

    Article  PubMed  Google Scholar 

  • Al-Lamki RS, Wang J, Tolkovsky AM, Bradley JA, Griffin JL, Thiru S, Wang EC, Bolton E, Min W, Moore P, Pober JS, Bradley JR (2008) TL1A both promotes and protects from renal inflammation and injury. J Am Soc Nephrol 19:953–960

    Article  PubMed  CAS  Google Scholar 

  • Bamias G, Martin C III, Marini M, Hoang S, Mishina M, Ross WG, Sachedina MA, Friel CM, Mize J, Bickston SJ, Pizarro TT, Wei P, Cominelli F (2003) Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol 171:4868–4874

    PubMed  CAS  Google Scholar 

  • Bamias G, Siakavellas SI, Stamatelopoulos KS, Chryssochoou E, Papamichael C, Sfikakis PP (2008) Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clin Immunol 129:249–255

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Mansfield KJ, Sandow SL, Sadananda P, Burcher E, Moore KH (2011) Porcine bladder urothelial, myofibroblast, and detrusor muscle cells: characterization and ATP release. Front Pharmacol. doi:10.3389/fphar.2011.00027

    PubMed  Google Scholar 

  • Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, Pang S, Li LY (2002) A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J 16:742–744

    PubMed  CAS  Google Scholar 

  • Cho H, Park SH, Lee S, Kang M, Hasty KA, Kim SJ (2011) Snapshot of degenerative aging of porcine intervertebral disc: a model to unravel the molecular mechanisms. Exp Mol Med 43:334–340

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Drake MJ, Fry CH, Eyden B (2006) Structural characterization of myofibroblasts in the bladder. BJU Int 97:29–32

    Article  PubMed  Google Scholar 

  • Duan L, Yang G, Zhang R, Feng L, Xu C (2012) Advancement in the research on vascular endothelial growth inhibitor (VEGI). Targeted Oncol 7:87–90

    Article  Google Scholar 

  • Ge Z, Sanders AJ, Ye L, Jiang WG (2011) Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer. Exp Ther Med 2:167–172

    PubMed  CAS  Google Scholar 

  • Gillespie JI, Markerink-van Ittersum M, De Vente J (2006) Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res 325:325–332

    Article  PubMed  CAS  Google Scholar 

  • Hashitani H, Brading AF (2003) Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. Br J Pharmacol 140:146–158

    Article  PubMed  CAS  Google Scholar 

  • Hernández M, Knight GE, Wildman SS, Burnstock G (2009) Role of ATP and related purines in inhibitory neurotransmission to the pig urinary bladder neck. Br J Pharmacol 157:1463–1473

    Article  PubMed  Google Scholar 

  • Hou W, Medynski D, Wu S, Lin X, Li LY (2005) VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res 11:5595–5602

    Article  PubMed  CAS  Google Scholar 

  • Itahana K, Campisi J, Dimri GP (2007) Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol 371:21–31

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga K, Murata T, Hori M, Ozaki H (2010) Isolation and characterization of bovine intestinal subepithelial myofibroblasts. J Pharmacol Sci 112:98–104

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Kim S, Guo F, Howard A, Zhang YZ (2007) Purification and crystallization of recombinant human TNF-like ligand TL1A. Cytokine 40:115–122

    Article  PubMed  CAS  Google Scholar 

  • Johnston L, Woolsey S, Cunningham RM, O’Kane H, Duggan B, Keane P, McCloskey KD (2010) Morphological expression of KIT positive interstitial cells of Cajal in human bladder. J Urol 184:370–377

    Article  PubMed  Google Scholar 

  • Kitson J, Raven T, Jiang YP, Goeddel DV, Giles KM, Pun KT, Grinham CJ, Brown R, Farrow SN (1996) A death-domain-containing receptor that mediates apoptosis. Nature 384:372–375

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Chapple CC, Chess-Williams R (2004) Characteristics of adenosine triphosphate [corrected] release from porcine and human normal bladder. J Urol 172:744–747

    Article  PubMed  CAS  Google Scholar 

  • Lan W, Petznick A, Heryati S, Rifada M, Tong L (2012) Nuclear Factor-kappaB: central regulator in ocular surface inflammation and diseases. Ocul Surf 10:137–148

    Article  PubMed  Google Scholar 

  • Lee YS, Lee KS, Jung JH, Han DH, Oh SJ, Seo JT, Lee JG, Park HS, Choo MS (2011) Prevalence of overactive bladder, urinary incontinence, and lower urinary tract symptoms: results of Korean EPIC study. World J Urol 29:185–190

    Article  PubMed  Google Scholar 

  • Marsters SA, Sheridan JP, Donahue CJ, Pitti RM, Gray CL, Goddard AD, Bauer KD, Ashkenazi A (1996) Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol 6:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • McCloskey KD (2010) Interstitial cells in the urinary bladder–localization and function. Neurol Urodyn 29:82–87

    Article  Google Scholar 

  • Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, Cho YH, Ullrich S, Kanakaraj P, Carrell J, Boyd E, Olsen HS, Hu G, Pukac L, Liu D, Ni J, Kim S, Gentz R, Feng P, Moore PA, Ruben SM, Wei P (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16:479–492

    Article  PubMed  CAS  Google Scholar 

  • Prehn JL, Mehdizadeh S, Landers CJ, Luo X, Cha SC, Wei P, Targan SR (2004) Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clin Immunol 112:66–77

    Article  PubMed  CAS  Google Scholar 

  • Sadananda P, Chess-Williams R, Burcher E (2008) Contractile properties of the pig bladder mucosa in response to neurokinin A: a role for myofibroblasts? Br J Pharmacol 153:1465–1473

    Article  PubMed  CAS  Google Scholar 

  • Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    Article  PubMed  CAS  Google Scholar 

  • Sikora E, Arendt T, Bennett M, Narita M (2011) Impact of cellular senescence signature on ageing research. Ageing Res Rev 10:146–152

    Article  PubMed  CAS  Google Scholar 

  • Southgate J, Harnden P, Trejdosiewicz LK (1999) Cytokeratin expression patterns in normal and malignant urothelium: a review of the biological and diagnostic implications. Histol Histopathol 14:657–664

    PubMed  CAS  Google Scholar 

  • Srivastava SK, Ramana KV (2009) Focus on molecules: nuclear factor-kappaB. Exp Eye Res 88:2–3

    Article  PubMed  CAS  Google Scholar 

  • Sui GP, Wu C, Fry CH (2006) Characterization of the purinergic receptor subtype on guinea-pig suburothelial myofibroblasts. BJU Int 97:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, Moore G, Truneh A (1997) Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene 204:35–46

    Article  PubMed  CAS  Google Scholar 

  • Templeman L, Sellers DJ, Chapple CR, Rosario DJ, Hay DP, Chess-Williams R (2003) Investigation of neurokinin-2 and -3 receptors in the human and pig bladder. BJU Int 92:787–792

    Article  PubMed  CAS  Google Scholar 

  • Trifillis AL, Cui X, Jacobs S, Warren JW (1995) Culture of bladder epithelium from cystoscopic biopsies of patients with interstitial cystitis. J Urol 153:243–248

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, PoPPe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34.1–34.11

    Article  Google Scholar 

  • Wang W, Zhang N, Zhu XH, He ZS, Wahafu W, Xu ZQ, Yang Y (2012) Involvement of TL1A and DR3 in induction of ischaemia and inflammation in urinary bladder dysfunction in the elderly. Mol Med Rep 6:434–438

    PubMed  CAS  Google Scholar 

  • Welch LC, Taubenberger S, Tennstedt SL (2011) Patients’ experiences of seeking health care for lower urinary tract symptoms. Res Nursing Health 34:496–507

    Article  Google Scholar 

  • Wong ET, Tergaonkar V (2009) Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin Sci 116:451–465

    Article  PubMed  CAS  Google Scholar 

  • Wood DN, Brown RA, Fry CH (2004) Characterization of the control of intracellular [Ca2+] and the contractile phenotype of cultured human detrusor smooth muscle cells. J Urol 172:753–757

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Sui GP, Fry CH (2004) Purinergic regulation of guinea pig suburothelial myofibroblasts. J Physiol 559:231–243

    Article  PubMed  CAS  Google Scholar 

  • Yao JJ, Zhang M, Miao XH, Zhao P, Zhu SY, Ding H, Qi ZT (2006) Isoform of vascular endothelial cell growth inhibitor (VEGI72-251) increases interleukin-2 production by activation of T lymphocytes. Acta Biochim Biophys Sin 38:249–253

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, Rojas L, Aggarwal BB, Ruben S, Li LY, Gentz R, Yu GL (1999) VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J 13:181–189

    PubMed  CAS  Google Scholar 

  • Zhang N, Sanders AJ, Ye L, Jiang WG (2009) Vascular endothelial growth inhibitor in human cancer (Review). Int J Mol Med 24:3–8

    PubMed  CAS  Google Scholar 

  • Zhang E, Zhu X, Han S, Peng Z, Wang W, Li J, Yang Y (2013) Increased expression of TNF ligand-related molecule 1A and death receptor 3 in bladder tissues of patients with painful bladder syndrome/interstitial cystitis. Exp Ther Med 5:282–286

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Natural Science Foundation of China (No. 81070603). The authors particularly appreciate the valuable comments from all other members in their laboratory.

Conflict of interest

All authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Zhang, N., Wang, W. et al. Expression and function of vascular endothelial growth inhibitor in aged porcine bladder detrusor muscle cells. Biogerontology 14, 543–556 (2013). https://doi.org/10.1007/s10522-013-9460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9460-5

Keywords

Navigation