Skip to main content
Log in

It’s not all equal: a multiphasic theory of thymic involution

  • Opinion Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Regression of the thymus is a key feature of immunosenescence, which coincides with a decrease in T cell output and contributes to the restriction of the T cell repertoire in the elderly, leading to increased susceptibility to illness and disease. However, the mechanisms involved in thymic involution are still not fully known. Although, it is often believed that thymic involution occurs during the onset of puberty, increasing data suggests alterations to the thymus happen much earlier in life. Therefore, the changes in the thymus and subsequent thymic function may not just be an ageing phenomenon. In this article, we propose that there are several, non-linear, phases to thymic atrophy, which are regulated by different mechanisms, including the familiar age-dependent thymic involution and a much earlier growth-dependent thymic involution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463

    Article  PubMed  CAS  Google Scholar 

  • Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120:435–446

    Article  PubMed  CAS  Google Scholar 

  • Aw D, Silva AB, Maddick M, von Zglinicki T, Palmer DB (2008) Architectural changes in the thymus of aging mice. Aging Cell 7:158–167

    Article  PubMed  CAS  Google Scholar 

  • Aw D, Silva AB, Palmer DB (2009a) Is thymocyte development functional in the aged? Aging 1:146–153

    PubMed  CAS  Google Scholar 

  • Aw D, Taylor-Brown F, Cooper K, Palmer DB (2009b) Phenotypical and morphological changes in the thymic microenvironment from ageing mice. Biogerontology 10:311–322

    Article  PubMed  Google Scholar 

  • Aw D, Silva AB, Palmer DB (2010) The effect of age on the phenotype and function of developing thymocytes. J Comp Pathol 142:S45–S59

    Article  PubMed  CAS  Google Scholar 

  • Barnard A, Layton D, Hince M, Sakkal S, Bernard C, Chidgey A, Boyd R (2008) Impact of the neuroendocrine system on thymus and bone marrow function. Neuroimmunomodulation 15:7–18

    PubMed  CAS  Google Scholar 

  • Bertho JM, Demarquay C, Moulain N, Van Der Meeren A, Berrih-Aknin S, Gourmelon P (1997) Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol 179:30–40

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113:567–574

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Guo J, Sun L, Fu J, Barnes PF, Metzger D, Chambon P, Oshima RG, Amagai T, Su DM (2010) Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem 285:5836–5847

    Article  PubMed  CAS  Google Scholar 

  • Contreiras EC, Lenzi HL, Meirelles MN, Caputo LF, Calado TJ, Villa-Verde DM, Savino W (2004) The equine thymus microenvironment: a morphological and immunohistochemical analysis. Dev Comp Immunol 28:251–264

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Gerpe L, Rey-Méndez M (2003) Evolution of the thymus size in response to physiological and random events throughout life. Microsc Res Tech 62:464–476

    Article  PubMed  Google Scholar 

  • George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272

    Article  PubMed  CAS  Google Scholar 

  • Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17:468–475

    Article  PubMed  CAS  Google Scholar 

  • Hale JS, Boursalian TE, Turk GL, Fink PJ (2006) Thymic output in aged mice. Proc Natl Acad Sci 103:8447–8452

    Article  PubMed  CAS  Google Scholar 

  • Haynes L, Swain SL (2006) Why aging T cells fail: implications for vaccination. Immunity 24:663–666

    Article  PubMed  CAS  Google Scholar 

  • Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL (2005) Effects of castration on thymocyte development in two different models of thymic involution. J Immunol 175:2982–2993

    PubMed  CAS  Google Scholar 

  • Henson SM, Akbar AN (2010) Memory T-cell homeostasis and senescence during aging. Adv Exp Med Biol 684:189–197

    Article  PubMed  CAS  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257

    Article  PubMed  CAS  Google Scholar 

  • Jamieson BD, Douek DC, Killian S, Hultin LE, Scripture-Adams DD, Giorgi JV, Marelli D, Koup RA, Zack JA (1999) Generation of functional thymocytes in the human adult. Immunity 10:569–575

    Article  PubMed  CAS  Google Scholar 

  • Lam SH, Chua HL, Gong Z, Wen Z, Lam TJ, Sin YM (2002) Morphologic transformation of the thymus in developing zebrafish. Dev Dyn 225:87–94

    Article  PubMed  CAS  Google Scholar 

  • Li L, Hsu HC, Grizzle WE, Stockard CR, Ho KJ, Lott P, Yang PA, Zhang HG, Mountz JD (2003) Cellular mechanism of thymic involution. Scand J Immunol 57:410–422

    Article  PubMed  CAS  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139

    Article  PubMed  CAS  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30:366–373

    Article  PubMed  CAS  Google Scholar 

  • Miller JF (1961) Immunological function of the thymus. Lancet 2:748–749

    Article  PubMed  CAS  Google Scholar 

  • Min H, Montecino-Rodriguez E, Dorshkind K (2004) Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol 173:245–250

    PubMed  CAS  Google Scholar 

  • Mitchell WA, Lang PO, Aspinall R (2010) Tracing thymic output in older individuals. Clin Exp Immunol 161:497–503

    Article  PubMed  CAS  Google Scholar 

  • Montecino-Rodriquez E, Min H, Dorshkind K (2005) Reevaluating current models of thymic involution. Semin Immunol 17:356–361

    Article  PubMed  CAS  Google Scholar 

  • Nasi M, Troiano L, Lugli E, Pinti M et al (2006) Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. Aging Cell 5:167–175

    Article  PubMed  CAS  Google Scholar 

  • Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107

    Article  PubMed  CAS  Google Scholar 

  • Nikolich-Zugich J (2005) T cell aging: naive but not young. J Exp Med 201:837–840

    Article  PubMed  CAS  Google Scholar 

  • Ortman CL, Dittmar KA, Witte PL, Le PT (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14:813–822

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A (2005) Human immunosenescence: is it infectious? Immunol Rev 205:257–268

    Article  PubMed  CAS  Google Scholar 

  • Shanley DP, Aw D, Manley NR, Palmer DB (2009) An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 30:374–381

    Article  PubMed  CAS  Google Scholar 

  • Steinmann GG (1986) Changes in the human thymus during aging. Curr Top Pathol 75:43–88

    Article  PubMed  CAS  Google Scholar 

  • Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575

    Article  PubMed  CAS  Google Scholar 

  • Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:253–2741

    Google Scholar 

  • Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93

    Article  PubMed  CAS  Google Scholar 

  • Torroba M, Zapata AG (2003) Aging of the vertebrate immune system. Microsc Res Tech 62:477–481

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr Wayne Mitchell (Cranfield University) for useful discussion and helpful comments.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald B. Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aw, D., Palmer, D.B. It’s not all equal: a multiphasic theory of thymic involution. Biogerontology 13, 77–81 (2012). https://doi.org/10.1007/s10522-011-9349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9349-0

Keywords

Navigation