Skip to main content
Log in

Age-related changes in the response of rat adipocytes to insulin: evidence for a critical role for inositol phosphoglycans and cAMP

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Adipose tissue plays a pivotal role in ageing and longevity; many studies, both human and animal, have focussed on the effects of food limitation. Here we present a new model based on striking differences between two ‘normal’ inbred strains of albino Wistar rats the Charles River (CR) and Harlan Olac (HO) that have marked differences in age-related accumulation of fat and insulin-stimulated rates of glucose incorporation into lipid in the epididymal fat pads (EFP). The incorporation [U-14C]glucose into lipid by adipocytes showed that the CR group had a twofold higher basal rate of lipogenesis and a greater response to insulin in vitro, exceptionally, adipocytes from CR group maintained the high response to insulin to late adulthood while retaining the lower EFP weight/100 g body weight. Inositol phosphoglycan A-type (IPG-A), a putative insulin second messenger, was 3.5-fold higher and cAMP significantly lower per EFP in the CR versus HO groups. Plasma insulin levels were similar and plasma leptin higher in CR versus HO groups. The anomaly of a higher rate of lipogenesis and response to insulin and lower EFP weight in the CR group is interpreted as the resultant effect of a faster turnover of lipid and stimulating effect of leptin in raising fatty acid oxidation by muscle, potentially key to the lower accumulation of visceral fat. The metabolic profile of the CR strain provides a template that could be central to therapies that may lead to the lowering of both adipose and non-adipocyte lipid accumulation in humans in ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CR:

Male albino Wistar rats, Charles River strain

EFP:

Epididymal fat pad

HO:

Male albino Wistar rats, Harlan Olac strain

IPG-A:

Inositol phosphoglycan A-type

IPG-P:

Inositol phosphoglycan P-type

PDC:

Pyruvate dehydrogenase complex

PDH:

Pyruvate dehydrogenase

PDK:

Pyruvate dehydrogenase kinase

PDP:

Pyruvate dehydrogenase phosphatase

References

  • Asplin I, Galasko G, Larner J (1993) Chiro-inositol deficiency and insulin resistance: a comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate and muscle of control and type II diabetic subjects. Proc Natl Acad Sci USA 90:5924–5928

    Article  PubMed  CAS  Google Scholar 

  • Atsumi T, Nishio T, Niwa H, Takeuchi J, Bando H, Shimizu C, Yoshioka N, Bucala R, Koike T (2005) Expression of inducible 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes 54:3349–3357

    Article  PubMed  CAS  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    Article  PubMed  CAS  Google Scholar 

  • Bjorbaek C, Kahn BB (2004) Leptin signalling in the central nervous system and the periphery. Recent Prog Horm Res 59:305–331

    Article  PubMed  CAS  Google Scholar 

  • Bray GA, York DA (1997) Leptin and clinical medicine: a new piece in the puzzle of obesity. J Clin Endocrionol Metab 82:2771–2776

    Article  CAS  Google Scholar 

  • Cammisotto PG, Bukowiecki LI (2002) Mechanisms of leptin secretion from white adipocytes. Am J Physiol Cell Physiol 283:C244–C250

    PubMed  CAS  Google Scholar 

  • Caro HN, Kunjara S, Rademacher TW, Leon Y, Jones DR, Avila MA, Varela-Nieto (1997) Isolation and partial characterisation of insulin-mimetic inositol phosphoglycans from human liver. Biochem Mol Med 61:214–228

    Article  PubMed  CAS  Google Scholar 

  • Carrascosa JM, Ruiz P, Martinez C, Pulido JA, Satrustegui J, Andres A (1989) Insulin receptor kinase activity in rat adipocytes is decreased during aging. Biochem Biophys Res Commun 160:303–309

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty N, d’Alarcao M (2005) An anionic inositol phosphate glycan pseudotetrasaccharide exhibits high insulin-mimetic activity in rat adipocytes. Bioorg Med Chem 13:6732–6741

    Article  PubMed  CAS  Google Scholar 

  • De Fronzo RA (1981) Glucose intolerance and ageing. Diabetes Care 4:493–501

    Article  Google Scholar 

  • Dole VP (1956) A relation between non-esterified fatty acids in plasma and metabolism of glucose. J Clin Invest 35:150–154

    Article  PubMed  CAS  Google Scholar 

  • Escriva F, Agote M, Rubio E, Molero JC, Pascual-Leone AM, Andres A, Satrustegui J, Carrascosa JM (1997) In vivo insulin-dependent glucose uptake of specific tissues is decreased during aging in mature Wistar rats. Endocrinology 138:49–54

    Article  PubMed  CAS  Google Scholar 

  • Escriva F, Gavete ML, Fermin Y, Perez C, Gallardo N, Alvarez C, Andres A, Ros M, Carrascosa JM (2007) Effect of age and moderate food restriction on insulin sensitivity in Wistar rats: role of adiposity. J Endocrinol 194:131–141

    Article  PubMed  CAS  Google Scholar 

  • Ferrannini E, Vichi S, Beck-Nielsen H, Laakso M, Paolisso G, Smith U (1996) Insulin action and age. European Group for the Study of Insulin Resistance (EGIR). Diabetes 45:947–953

    Article  PubMed  CAS  Google Scholar 

  • Fink RI, Huecksteadt T, Karaoghlanian Z (1986) The effects of aging on glucose metabolism in adipocytes from Fischer rats. Endocrinology 118:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Frick W, Bauer A, Bauer S, Weid S, Müller G (1998) Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action. Biochemistry 37:13421–13436

    Article  PubMed  CAS  Google Scholar 

  • Fruhbeck G (2006) Intracellular pathways activated by leptin. Biochem J 393:7–20

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Varela-Nieto I (1999) Diabetes and the role of inositol containing lipids in insulin signalling. Mol Med 5:505–514

    PubMed  CAS  Google Scholar 

  • Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Muller G, Wied S, Crecelius A, Eckel J (1998) Signalling pathways of an insulin-mimetic phosphoinositol glycan-peptide in muscle and adipose tissue. Biochem J 330:277–286

    PubMed  CAS  Google Scholar 

  • Klöting N, Blüher M (2005) Extended longevity and insulin signaling in adipose tissue. Exp Gerontol 40:878–883

    Article  PubMed  CAS  Google Scholar 

  • Kunjara S, Caro HN, McLean P, Rademacher TW (1995) Tissue specific release of inositol phosphoglycans. In: Svasti J et al (eds) Biopolymers and bioproducts: structure, function and applications. Samakkhisan (Dokya), Bangkok, Thailand, pp 301–306

    Google Scholar 

  • Kunjara S, Wang DY, Greenbaum AL, McLean P, Kurtz A, Rademacher TW (1999) Inositol phosphoglycans in diabetes and obesity: urinary levels of IPG A-type and IPG P-type, and relationship to pathophysiological changes. Mol Genet Metab 68:488–502

    Article  PubMed  CAS  Google Scholar 

  • Kunjara S, Greenbaum AL, Wang D-Y, Caro H, McLean P, Redman CWG, Rademacher TW (2000a) Inositol phosphoglycans and signal transduction systems in pregnancy in preeclampsia and diabetes: evidence for a significant role in preeclampsia at placental and systemic levels. Mol Genet Metab 69:144–158

    Article  PubMed  CAS  Google Scholar 

  • Kunjara S, Wang DY, McLean P, Greenbaum AL, Rademacher TW (2000b) Inositol phosphoglycans and the regulation of the secretion of leptin: in vitro effects on leptin release from adipocytes and the relationship to obesity. Mol Genet Metab 70:61–68

    Article  PubMed  CAS  Google Scholar 

  • Kunjara S, Greenbaum AL, McLean P, Radamacher TW (2001) Inositol phosphoglycans and insulin sensitivity of adipocytes from two strains of rats: relation to obesity. Diabetologia 44 (Suppl A177) (Abstract 680)

  • Kunjara S, McLean P, Greenbaum AL, Rademacher TW (2008) Insight into the role of inositolphosphoglycans in insulin response and the regulation of glucose and lipid metabolism illustrated by the response of adipocytes from two strains of rats. Mol Genet Metab 94:263–266

    Article  PubMed  CAS  Google Scholar 

  • Larner J (1990) Insulin and the stimulation of glycogen synthesis. The road from glycogen structure to glycogen synthesis to cyclic AMP-dependent protein kinase to insulin mediators. Adv Enzymol Relat Areas Mol Biol 63:173–231

    PubMed  CAS  Google Scholar 

  • Larner J (2001) d-Chiro-inositol in insulin action and insulin resistance—old-fashioned biochemistry still at work. Life 51:139–148

    PubMed  CAS  Google Scholar 

  • Lawrence JC, Guinovart JJ, Larner J (1977) Activation of rat adipocyte glycogen synthase by insulin. J Biol Chem 252:444–450

    PubMed  CAS  Google Scholar 

  • Lilley K, Zhang C, Villar-Palasi C, Larner J, Huang I (1992) Insulin mediator stimulation of pyruvate dehydrogenase phosphatase. Arch Biochem Biophys 296:170–174

    Article  PubMed  CAS  Google Scholar 

  • Macaulay SL, Larkin RG (1988) Impaired insulin action in adipocytes of New Zealand obese mice. A role for post-binding defects in pyruvate dehydrogenase and insulin mediator activity. Metabolism 37:958–965

    Article  PubMed  CAS  Google Scholar 

  • McLean P, Kunjara S, Greenbaum AL, Gumaa K, Lopez-Prados J, Martin-Lomas M, Raemacher TW (2008) Reciprocal control of pyruvate dehydrogenase kinase and phosphatase by inositol phosphoglycans. Dynamic state set by ‘Push-Pull’ system. J Biol Chem 283:33428–33436

    Article  PubMed  CAS  Google Scholar 

  • Molero JC, Perez C, Martinez C, Villar M, Andres A, Fermin Y, Carrascosa JM (2002) Activation of MAP kinase by insulin and vanadate in adipocytes from young and old rats. Mol Cell Endocrinol 189:77–84

    Article  PubMed  CAS  Google Scholar 

  • Montague CT, O’Rahilly S (2000) The perils of portliness. Causes and consequences of visceral adiposity. Diabetes 49:883–888

    Article  PubMed  CAS  Google Scholar 

  • Narimiya M, Azhar S, Dolkas CB, Mondon CE, Sims C, Wright DW, Reaven GM (1984) Insulin resistance in older rats. Am J Physiol 246:E397–E404

    PubMed  CAS  Google Scholar 

  • O’Rahilly S, Farooqui IS, Yeo GS, Challis BG (2003) Minireview: human obesity—lessons from monogenetic disorders. Endocrinology 144:3757–3764

    Article  PubMed  CAS  Google Scholar 

  • Perusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C (2005) The human obesity gene map: the 2004 update. Obes Res 13:381–490

    Article  PubMed  CAS  Google Scholar 

  • Potapova IA, El-Maghrabi MR, Doronin SV, Benjamin WB (2000) Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increase the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars. Biochemistry 39:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Rademacher TW, Caro H, Kunjara S, Wang DY, Greenbaum AL, Mclean P (1994) Inositolphosphoglycan second messengers. Braz J Med Biol Res 27:327–341

    PubMed  CAS  Google Scholar 

  • Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Reaven GM, Chen N, Hollenbeck C, Chen YD (1989) Effect of age on glucose tolerance and glucose uptake in healthy individuals. J Am Geriatr Soc 37: 735–740

    Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. 1. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  • Romero G, Larner J (1993) Insulin mediators and the mechanism of insulin action. Adv Pharmacol 24:21–50

    Article  PubMed  CAS  Google Scholar 

  • Rowe JW, Minaker KL, Pallota JA, Flier JS (1983) Characterization of the insulin resistance of aging. J Clin Invest 71:1581–1587

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Arias JA, Sanchez-Gutierrez JC, Guadano A, Alvarez JF, Samper B, Mato JM, Feliu JE (1993) Changes in the insulin-sensitive glycosyl-phosphatidyl-inositol signalling system with aging in rat hepatocytes. Eur J Biochem 211:431–436

    Article  PubMed  CAS  Google Scholar 

  • Shashkin PN, Shashkin EF, Fernquist-Forbes E, Zhou Y-P, Grill V, Katz A (1997) Insulin mediators in man: effects of glucose ingestion and insulin resistance. Diabetologia 40:557–563

    Article  PubMed  CAS  Google Scholar 

  • Szkudelski T (2007) Intracellular mediators in regulation of leptin secretion from adipocytes. Physiol Res 56:503–512

    PubMed  CAS  Google Scholar 

  • Varela-Nieto I, Leon Y, Caro HN (1996) Cell signalling by inositol phosphoglycans from different species. Comp Biochem Physiol 115B:223–241

    CAS  Google Scholar 

  • Villar-Palasi C (1991) Substrate specific activation by glucose 6-phosphate of the dephosphorylation of muscle glycogen synthase. Biochim Biophys Acta 1095:261–267

    Article  PubMed  CAS  Google Scholar 

  • Villar M, Serrano R, Gallardo N, Carrascosa JM, Martinez C, Andres A (2006) Altered subcellular distribution of IRS1 and IRS3 is associated with defective AKT activation and GLUT4 translocation in insulin-resistant old rat adipocytes. Biochim Biophys Acta 1763:197–206

    Article  PubMed  CAS  Google Scholar 

  • You T, Yang R, Lyles MF, Gong D, Nicklas BJ (2005) Abdominal adipose tissue cytokine gene expression: relationship to obesity and metabolic risk factors. Am J Physiol Endocrinol Metab 288:E741–E747

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Chen Y, Heiman M, DiMarchi R (2005) Leptin: structure, function and biology. Vitamin Horm 71:346–371

    Google Scholar 

  • Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetic epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  • Zmuda-Trzebiatowska E, Manganiello V, Dererman E (2007) Novel mechanisms of the regulation of protein kinase B in adipocytes; implications for protein kinase A, Epac, phosphodiesterases 3 and 4. Cell Signal 19:81–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. Dennis Wang and Dr Khalid Elased for plasma hormone estimations. This work was in part supported by grants from the Medical Research Council and the Basil Samuel Charitable Trust and from the International Scientific Cooperation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia McLean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunjara, S., Greenbaum, A.L., Rademacher, T.W. et al. Age-related changes in the response of rat adipocytes to insulin: evidence for a critical role for inositol phosphoglycans and cAMP. Biogerontology 11, 483–493 (2010). https://doi.org/10.1007/s10522-010-9271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-010-9271-x

Keywords

Navigation