Skip to main content
Log in

Metabolic adaptations in the adipose tissue that underlie the body fat mass gain in middle-aged rats

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Little is known about adipocyte metabolism during aging process and whether this can influence body fat redistribution and systemic metabolism. To better understand this phenomenon, two animal groups were studied: young—14 weeks old—and middle-aged—16 months old. Periepididymal (PE) and subcutaneous (SC) adipocytes were isolated and tested for their capacities to perform lipolysis and to incorporate D-[U-14C]-glucose, D-[U-14C]-lactate, and [9,10(n)-3H]-oleic acid into lipids. Additionally, the morphometric characteristics of the adipose tissues, glucose tolerance tests, and biochemical determinations (fasting glucose, triglycerides, insulin) in blood were performed. The middle-aged rats showed adipocyte (PE and SC) hypertrophy and glucose intolerance, although there were no significant changes in fasting glycemia and insulin. Furthermore, PE tissue revealed elevated rates (+50 %) of lipolysis during beta-adrenergic-stimulation. There was also an increase (+62 %) in the baseline rate of glucose incorporation into lipids in the PE adipocytes, while these PE cells were almost unresponsive to insulin stimulation and less responsive (a 34 % decrease) in the SC tissue. Also, the capacity of oleic acid esterification was elevated in baseline state and with insulin stimulus in the PE tissue (+90 and 82 %, respectively). Likewise, spontaneous incorporation of lactate into lipids in the PE and SC tissues was higher (+100 and 11 %, respectively) in middle-aged rats. We concluded that adipocyte metabolism of middle-aged animals seems to strongly favor cellular hypertrophy and increased adipose mass, particularly the intra-abdominal PE fat pad. In discussion, we have interpreted all these results as a metabolic adaptations to avoid the spreading of fat that can reach tissues beyond adipose protecting them against ectopic fat accumulation. However, these adaptations may have the potential to lead to future metabolic dysfunctions seen in the senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409:729–733

    Article  CAS  PubMed  Google Scholar 

  • Cadoudal T, Leroyer S, Reis AF, Tordjman J, Durant S, Fouque F, Collinet M, Quette J, Chauvet G, Beale E, Velho G, Antoine B, Benelli C, Forest C (2005) Proposed involvement of adipocyte glyceroneogenesis and phosphoenolpyruvate carboxykinase in the metabolic syndrome. Biochimie 87:27–32

    Article  CAS  PubMed  Google Scholar 

  • Carrascosa JM, Andrés A, Ros M, Bogónez E, Arribas C, Fernández-Agulló T, De Solís AJ, Gallardo N, Martínez C (2011) Development of insulin resistance during aging: involvement of central processes and role of adipokines. Curr Protein Pept Sci 12:305–315

    Article  CAS  PubMed  Google Scholar 

  • Cartwright MJ, Tchkonia T, Kirkland JL (2007) Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol 42:463–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dentin R, Langin D, Postic C (2012) Hidden variant of ChREBP in fat links lipogenesis to insulin sensitivity. Cell Metab 15:795–797

    Article  CAS  PubMed  Google Scholar 

  • Di Girolamo M, Mendlinger S, Fertig JW (1971) A simple method to determine fat cell size and number in four mammalian species. Amer J Physiol 221:850–858

    PubMed  Google Scholar 

  • Franckhauser S, Muñoz S, Pujol A, Casellas A, Riu E, Otaegui P, Su B, Bosch F (2002) Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 51:624–630

    Article  CAS  PubMed  Google Scholar 

  • Forest C, Tordjman J, Glorian M, Duplus E, Chauvet G, Quette J, Beale EG, Antoine B (2003) Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase. Biochem Soc Trans 31:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, Scherer P, Rossetti L, Barzilai N (2002) Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 51:2951–2958

    Article  CAS  PubMed  Google Scholar 

  • Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB (2010) Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol 298:C961–C971

    Article  CAS  PubMed  Google Scholar 

  • Herman MA, Peroni OD, Villoria J, Schön MR, Abumrad NA, Blüher M, Klein S, Kahn BB (2012) A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484:333–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirkland JL, Dobson DE (1997) Preadipocyte function and aging: links between age-related changes in cell dynamics and altered fat tissue function. J Am Geriatr Soc 45:959–967

    Article  CAS  PubMed  Google Scholar 

  • Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767

    Article  CAS  PubMed  Google Scholar 

  • Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, Kern M, Stumvoll M, Blüher M (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299:E506–E515

    Article  PubMed  Google Scholar 

  • Langin D (2011) In and out: adipose tissue lipid turnover in obesity and dyslipidemia. Cell Metab 14:569–570

    Article  CAS  PubMed  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose andinsulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  • Newsholme EA (1980) Reflections on the mechanism of action of hormones. FEBS Lett 117(Suppl):K121–K134

    Article  PubMed  Google Scholar 

  • Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–1588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nolan CJ, Ruderman NB, Kahn SE, Pedersen O, Prentki M (2015) Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes 64:673–686

    Article  CAS  PubMed  Google Scholar 

  • Plocher TA, Powley TL (1977) Maintenance of obesity following hypophysectomy in the obese-hyperglycemic mouse (ob/ob). Yale J Biol Med 50:291–300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prada PO, Zecchin HG, Gasparetti AL, Torsoni MA, Ueno M, Hirata AE, Corezola do Amaral ME, Höer NF, Boschero AC, Saad MJ (2005) Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 146:1576–1587

    Article  CAS  PubMed  Google Scholar 

  • Randle PJ, Priestman DA, Mistry S, Halsall A (1994) Mechanisms modifying glucose oxidation in diabetes mellitus. Diabetologia 37:S155–S161

    Article  CAS  PubMed  Google Scholar 

  • Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, Tilghman SM, Hanson RW (2003) Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 278:30413–30416

    Article  CAS  PubMed  Google Scholar 

  • Reynisdottir S, Dauzats M, Thörne A, Langin D (1997) Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J Clin Endocrinol Metab 82:4162–4166

    CAS  PubMed  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated adipocytes 1. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    CAS  PubMed  Google Scholar 

  • Soriguer F, Gutiérrez-Repiso C, Rubio-Martín E, García-Fuentes E, Almaraz MC, Colomo N, Esteva de Antonio I, de Adana MS, Chaves FJ, Morcillo S, Valdés S, Rojo-Martínez G (2013) Metabolically healthy but obese, a matter of time? Findings from the prospective Pizarra study. J Clin Endocrinol Metab 98:2318–2325

    Article  CAS  PubMed  Google Scholar 

  • Takada J, Fonseca-Alaniz MH, de Campos TB, Andreotti S, Campana AB, Okamoto M, Borges-Silva C, Machado UF, Lima FB (2008) Metabolic recovery of adipose tissue is associated with improvement in insulin resistance in a model of experimental diabetes. J Endocrinol 198:51–60

    Article  CAS  PubMed  Google Scholar 

  • Tchernof A, Després JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93:359–404

    Article  CAS  PubMed  Google Scholar 

  • Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17:644–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (Process 14/15210-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rogério Antonio Laurato Sertié or Rennan de Oliveira Caminhotto.

Additional information

Rogério Antonio Laurato Sertié and Rennan de Oliveira Caminhotto contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sertié, R.A.L., Caminhotto, R.d.O., Andreotti, S. et al. Metabolic adaptations in the adipose tissue that underlie the body fat mass gain in middle-aged rats. AGE 37, 87 (2015). https://doi.org/10.1007/s11357-015-9826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9826-5

Keywords

Navigation