Skip to main content
Log in

Gompertz law and aging as exclusion effects

  • Opinion Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The exponential increase with age in mortality rate, the Gompertz law, indicates that the decrease in vitality and viability linked to aging depends on phenomena with exponential or logarithmic dynamics. Gompertz slope (α) is assumed to be a measure of aging rate, provided the studied cohort is homogeneous and in a supporting environment. The law provides no clue about the cause of aging, but may be formally correlated with various physical or mathematical functions. A possible correlation between the Ogston–Laurent exclusion equation and human aging is examined. An increase with age of an inert cross-linked insoluble protein network is assumed to result in a logarithmic decrease in water volume available to colloidal macromolecules. In this model, α is assumed to be a measure of the rate of accumulation of the polypeptide network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackers GK (1967) A new calibration procedure for gel filtration columns. J Biol Chem 242:3237–3238

    CAS  Google Scholar 

  • Brock MA, Chrest F (1993) Differential regulation of actin polymerization following activation of resting T-lymphocytes from young and aged mice. J Cell Physiol 157:367–378

    Article  PubMed  CAS  Google Scholar 

  • Brody S (1923) The kinetics of senescence. J Gen Physiol 6:245–257

    Article  Google Scholar 

  • Carnes BA, Holden LR, Olshansky SJ, Witten TM, Siegel JS (2006) Mortality partitions and their relevance to research on senescence. Biogerontology 7:183–198

    Article  PubMed  Google Scholar 

  • Carnes BA, Olshansky SJ (2001) Heterogeneity and its biodemographic implications for longevity and mortality. Exp Gerontol 36:419–430

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibrium of hydrostatic pressure in blebbing cells. Nature 435:365–369

    Article  PubMed  CAS  Google Scholar 

  • Conti B, Sanchez-Alavez M, Winsky-Sommerer R, Morale MC, Lucero J, Brownell S, Fabre V, Huitron-Resendiz S, Henriksen S, Zorilla EP, deLecea L, Bartfai T (2006) Transgenic mice with a reduced core body temperature have an increased life span. Science 314:825–828

    Article  PubMed  CAS  Google Scholar 

  • Drenos F, Westendorp RGJ, Kirkwood TBL (2006) Trade-off mediated effects on the genetics of human survival caused by increasingly benign living conditions. Biogerontology 7:287–295

    Article  PubMed  Google Scholar 

  • Driver C (2001) The Gompertz function does not measure ageing. Biogerontology 2:61–65

    Article  PubMed  CAS  Google Scholar 

  • Failla G (1958) The aging process and cancerogenesis. Ann NY Acad Sci 721:1124–1140

    Article  Google Scholar 

  • Finch CE, Pike MC (1996) Maximum life span prediction from the Gompertz mortality model. J Gerontol 51A:B183–B194

    Google Scholar 

  • Gavrilov LA, Gavrilova NS (1991) The biology of life span: a quantitative approach. Harwood Academic, New York

    Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society (London) Series A 115:513–585

    Article  Google Scholar 

  • Greenwood M (1928) “Laws” of mortality from the biological point of view. J Hyg 28:267–294

    Article  Google Scholar 

  • Hallén A (2002) Accumulation of insoluble protein and aging. Biogerontology 3:307–315

    Article  PubMed  Google Scholar 

  • Jones HB (1956) A special consideration of the aging process, disease and life expectancy. Adv Biol Med Phys 4:281–337

    PubMed  CAS  Google Scholar 

  • Laurent TC (1963) The interaction between polysaccharides and other macromolecules 5. The solubility of proteins in the presence of dextran. Biochem J 89:253–257

    PubMed  CAS  Google Scholar 

  • Laurent TC (1964) The interaction between polysaccharides and other macromolecules 9. The exclusion of molecules from hyaluronic acid gels and solutions. Biochem J 93:106–112

    PubMed  CAS  Google Scholar 

  • Laurent TC, Killander J (1964) A theory of gel filtration and its experimental verification. J Chromatogr 14:317–330

    Article  CAS  Google Scholar 

  • van Leeuwen IMM, Kelpin FDL, Kooijman SALM (2002) A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontology 3:373–381

    Article  PubMed  Google Scholar 

  • Liu RK, Walford RL (1975) Mid-life temperature-transfer effects on life-span of annual fish. J Gerontol 30:129–131

    PubMed  CAS  Google Scholar 

  • Loeb J, Northrop JH (1916) Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci USA 2:456–457

    Article  PubMed  CAS  Google Scholar 

  • Makeham WM (1860) On the law of mortality and the construction of annuity tables. J Inst Actuaries 8:301–310

    Google Scholar 

  • Makeham WM (1867) On the law of mortality. J Inst Actuaries 13:325–358

    Google Scholar 

  • Mildvan AS, Strehler BL (1960) A critique of theories of mortality. In: Strehler BL (ed) The biology of aging, vol 6. Am Inst Biol Sci, Washington, DC, pp 216–235

  • Ogston AG (1958) The spaces in a uniform random suspension of fibres. Trans Faraday Soc 54:1754–1757

    Article  Google Scholar 

  • Olshansky SJ, Carnes BA (1997) Ever since Gompertz. Demography 34:1–15

    Article  PubMed  CAS  Google Scholar 

  • Rao KMK, Currie MS, Padmanabhan J, Cohen HJ (1992) Age-related alterations in actin cytosceleton and receptor expression in human leukocytes. J Gerontol 47:B37–B44

    PubMed  CAS  Google Scholar 

  • Ris H (1985) The cytoplasmic filament system in critical point-dried whole mounts and plastic-embedded sections. J Cell Biol 100:1474–1487

    Article  PubMed  CAS  Google Scholar 

  • Rose MR, Rauser CL, Mueller LD, Benford G (2006) A revolution for aging research. Biogerontology 7:269–277

    Article  PubMed  Google Scholar 

  • Sacher GA, Trucco E (1962) The Stochastic theory of mortality. Ann NY Acad Sci 96:985–1007

    Article  PubMed  CAS  Google Scholar 

  • Shock NW (1957) Age changes in some physiologic processes. Geriatrics 12:40–48

    PubMed  CAS  Google Scholar 

  • Strehler BL (1961) Studies on the comparative physiology of aging II. On the mechanism of temperature life-shortening in Drosophila melanogaster. J Gerontol 16:2–12

    CAS  Google Scholar 

  • Strehler BL (1977) Time, cells, and aging, 2nd edn. Academic Press, New York

    Google Scholar 

  • Strehler BL, Mildvan AS (1960) General theory of mortality and aging. Science 132:14–21

    Article  PubMed  CAS  Google Scholar 

  • Stroikin Y, Dalen H, Brunk UT, Terman A (2005) Testing the “garbage” accumulation theory of ageing: mitotic activity protects cells from death induced by inhibition of autophagy. Biogerontology 6:39–47

    Article  PubMed  CAS  Google Scholar 

  • Wang E (1985) Are cross-bridging structures involved in the bundle formation of intermediate filaments and the decrease in locomotion that accompany cell aging? J Cell Biol 100:1466–1473

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Gundersen D (1984) Increased organization of cytosceleton accompanying the aging of human fibroblasts in vitro. Exp Cell Res 154:191–202

    Article  PubMed  CAS  Google Scholar 

  • Yashin AI, Begun AS, Boiko SI, Ukraintseva SV, Oeppen J (2001) The new trends in survival improvements require a revision of traditional gerontological concepts. Exp Gerontol 37:157–167

    Article  PubMed  CAS  Google Scholar 

  • Yashin AI, Begun AS, Boiko SI, Ukraintseva SV, Oeppen J (2002a) New age patterns of survival improvement in Sweden: do they characterize changes in individual aging? Mech Ageing Develop 123:637–647

    Article  Google Scholar 

  • Yashin AI, Ukraintseva SV, Boiko SI, Arbeev KG (2002b) Individual aging and mortality rate: how are they related? Soc Biol 49:206–217

    PubMed  Google Scholar 

  • Yoshida S, Handa Y, Suzuki T, Ogawa M, Suzuki M, Tamai A, Abe A, Katayama E, Sasakawa C (2006) Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science 314:985–989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anund Hallén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallén, A. Gompertz law and aging as exclusion effects. Biogerontology 8, 605–612 (2007). https://doi.org/10.1007/s10522-007-9087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9087-5

Keywords

Navigation