Skip to main content
Log in

A Twin Study of the Genetics of High Cognitive Ability Selected from 11,000 Twin Pairs in Six Studies from Four Countries

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Although much genetic research has addressed normal variation in intelligence, little is known about the etiology of high cognitive abilities. Using data from 11,000 twin pairs (age range = 6–71 years) from the genetics of high cognitive abilities consortium, we investigated the genetic and environmental etiologies of high general cognitive ability (g). Age-appropriate psychometric cognitive tests were administered to the twins and used to create g scores standardized within each study. Liability-threshold model fitting was used to estimate genetic and environmental parameters for the top 15% of the distribution of g. Genetic influence for high g was substantial (0.50, with a 95% confidence interval of 0.41–0.60). Shared environmental influences were moderate (0.28, 0.19–0.37). We conclude that genetic variation contributes substantially to high g in Australia, the Netherlands, the United Kingdom and the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1987) Factor analysis and AIC. Psychometrika 52:317–332

    Article  Google Scholar 

  • Bartels M, Rietveld MJ, van Baal GC, Boomsma DI (2002) Genetic and environmental influences on the development of intelligence. Behav Genet 32:237–249. doi:10.1023/A:1019772628912

    Article  PubMed  Google Scholar 

  • Bleichrodt N, Drenth PJD, Zaal JN, Resing WCM (1984) Revisie Amsterdams kinder intelligentie test. Swets and Zeitlinger B.V, Lisse

    Google Scholar 

  • Boomsma DI, De Geus EJC, Vink JM, Stubbe JH, Distel MA, Hottenga JJ et al (2006) Netherlands twin register: from twins to twin families. Twin Res Hum Genet 9:849–857. doi:10.1375/twin.9.6.849

    Article  PubMed  Google Scholar 

  • Boomsma DI, van Beijsterveld TCEM, Beem AL, Hoekstra RA, Polderman TJC, Bartels M (2008) Intelligence and birth order in boys and girls. Intelligence 36:630–634. doi:10.1016/j.intell.2008.01.005

    Article  Google Scholar 

  • Bouchard TJ Jr, McGue M (1981) Familial studies of intelligence: a review. Science 212:1055–1059. doi:10.1126/science.7195071

    Article  PubMed  Google Scholar 

  • Davis OSP, Haworth CMA, Plomin R (2009) Generalist genes for cognition: etiology of learning abilities and disabilities in early adolescence. Cogn Neuropsychiatr (in press)

  • Deary IJ, Spinath FM, Bates TC (2006) Genetics of intelligence. Eur J Hum Genet 14:690–700. doi:10.1038/sj.ejhg.5201588

    Article  PubMed  Google Scholar 

  • DeFries JC (1985) Colorado reading project. In: Gray DB, Kavanagh JF (eds) Biobehavioral measures of dyslexia. York Press, Parkton, pp 107–122

    Google Scholar 

  • DeFries JC, Olson RK, Pennington RF, Smith SD (1991) Colorado reading project: an update. In: Duane DD, Gray DB (eds) The reading brain: the biological basis of dyslexia, York Press, Parkton, pp 53–87

  • DeFries JC, Filipek PA, Fulker DW, Olson RK, Pennington BF, Smith SD et al (1997) Colorado learning disabilities research center. Learn Disabil Q 8:7–19

    Google Scholar 

  • Falconer DS (1965) The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet 29:51–76. doi:10.1111/j.1469-1809.1965.tb00500.x

    Article  Google Scholar 

  • Fox PW, Hershberger SL, Bouchard TJ Jr (1996) Genetic and environmental contributions to the acquisition of a motor skill. Nature 384:356–357. doi:10.1038/384356a0

    Article  PubMed  Google Scholar 

  • Galton F (1869) Hereditary genius: an enquiry into its laws and consequences. Macmillan, London

    Google Scholar 

  • Galton F (1883) Inquiries into human faculty and its development. Macmillan, London

    Google Scholar 

  • Haworth CMA, Harlaar N, Kovas Y, Davis OSP, Oliver BR, Hayiou-Thomas ME et al (2007) Internet cognitive testing of large samples needed in genetic research. Twin Res Hum Genet 10:554–563. doi:10.1375/twin.10.4.554

    Article  PubMed  Google Scholar 

  • Haworth CMA, Wright MJ, Luciano M, Martin NG, de Geus EJC, van Beijsterveldt CEM et al (2009) The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatr (in press)

  • Howe MJA, Davidson JW, Sloboda JA (1998) Innate talents: reality or myth? Behav Brain Sci 21:399–442. doi:10.1017/S0140525X9800123X

    Article  Google Scholar 

  • Iacono WG, Carlson SR, Taylor J, Elkins IJ, McGue M (1999) Behavioral disinhibition and the development of substance-use disorders: findings from the Minnesota twin family study. Dev Psychopathol 11:869–900. doi:10.1017/S0954579499002369

    Article  PubMed  Google Scholar 

  • Iacono WG, McGue M, Krueger RF (2006) Minnesota Center for twin and family research. Twin Res Hum Genet 9:978–984. doi:10.1375/twin.9.6.978

    Article  PubMed  Google Scholar 

  • Jackson DN (1998) Multidimensional aptitude battery II: manual. Sigma Assessment Systems, Port Huron

    Google Scholar 

  • Jensen AR (1998) The g factor: the science of mental ability. Praeger, Wesport

    Google Scholar 

  • Johnson W, Nijenhuis J, Bouchard TJ (2008) Still just 1 g: consistent results from five test batteries. Intelligence 36:81–95. doi:10.1016/j.intell.2007.06.001

    Article  Google Scholar 

  • Koeppen-Schomerus G, Spinath FM, Plomin R (2003) Twins and non-twin siblings: different estimates of shared environmental influence in early childhood. Twin Res 6:97–105. doi:10.1375/136905203321536227

    Article  PubMed  Google Scholar 

  • Kovas Y, Haworth CMA, Dale PS, Plomin R (2007) The genetic and environmental origins of learning abilities and disabilities in the early school years. Monogr Soc Res Child Dev 72:1–144

    Google Scholar 

  • Kruglyak L (2008) The road to genome-wide association studies. Nat Rev Genet 9:314–318. doi:10.1038/nrg2316

    Article  PubMed  Google Scholar 

  • Lubinski D, Benbow CP (2006) Study of mathematically precocious youth after 35 years: uncovering antecedents for the development of math-science expertise. Perspect Psychol Sci 1:316–345

    Google Scholar 

  • Lubinski D, Benbow CP, Webb RM, Bleske-Rechek A (2006) Tracking exceptional human capital over two decades. Psychol Sci 17:194–199. doi:10.1111/j.1467-9280.2006.01685.x

    Article  PubMed  Google Scholar 

  • Luciano M, Wright MJ, Geffen GM, Geffen LB, Smith GA, Evans DM et al (2003a) A genetic two-factor model of the covariation among a subset of multidimensional aptitude battery and Wechsler adult intelligence scale-revised subtests. Intelligence 31:589–605. doi:10.1016/S0160-2896(03)00057-6

    Article  Google Scholar 

  • Luciano M, Wright MJ, Smith GA, Geffen GM, Geffen LB, Martin NG (2003b) Genetic covariance between processing speed and IQ. In: Plomin R, DeFries JC, Craig IW, McGuffin P (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington, DC, pp 163–181

    Chapter  Google Scholar 

  • Lykken DT (1968) Statistical significance in psychological research. Psychol Bull 70:151–159. doi:10.1037/h0026141

    Article  PubMed  Google Scholar 

  • Lykken DT (1982) Research with twins: the concept of emergenesis. Psychophysiology 19:361–373. doi:10.1111/j.1469-8986.1982.tb02489.x

    Article  PubMed  Google Scholar 

  • Lykken DT (2006) The mechanism of emergenesis. Genes Brain Behav 5:306–310. doi:10.1111/j.1601-183X.2006.00233.x

    Article  PubMed  Google Scholar 

  • McGue M, Bouchard TJ Jr (1984) Adjustment of twin data for the effects of age and sex. Behav Genet 14:325–343. doi:10.1007/BF01080045

    Article  PubMed  Google Scholar 

  • Neale MC, Boker SM, Xie G, Maes H (2006) Mx: statistical modeling, 7th edn. Department of Psychiatry, Richmond

    Google Scholar 

  • Nichols RC, Bilbro WC (1966) The diagnosis of twin zygosity. Acta Genet 16:265–275. doi:10.1159/000151973

    PubMed  Google Scholar 

  • Nyholt DR (2006) On the probability of dizygotic twins being concordant for two alleles at multiple polymorphic loci. Twin Res Hum Genet 9:194–197. doi:10.1375/twin.9.2.194

    Article  PubMed  Google Scholar 

  • Oliver BR, Plomin R (2007) Twins early development study (TEDS): a multivariate, longitudinal genetic investigation of language, cognition and behavior problems from childhood through adolescence. Twin Res Hum Genet 10:96–105. doi:10.1375/twin.10.1.96

    Article  PubMed  Google Scholar 

  • Petrill SA, Saudino KJ, Cherny SC, Emde RN, Fulker DW, Hewitt JK et al (1998) Exploring the genetic and environmental etiology of high general cognitive ability in 14 to 36 month-old twins. Child Dev 69:68–74

    PubMed  Google Scholar 

  • Petrill SA, Deater-Deckard K, Thompson LA, Schatschneider C, DeThorne LS, Vandenbergh DJ (2007) Longitudinal genetic analysis of early reading: the Western Reserve reading project. Read Writ 20:127–146. doi:10.1007/s11145-006-9021-2

    Article  Google Scholar 

  • Plomin R, Kovas Y (2005) Generalist genes and learning disabilities. Psychol Bull 131:592–617. doi:10.1037/0033-2909.131.4.592

    Google Scholar 

  • Plomin R, Spinath FM (2004) Intelligence: genetics, genes, and genomics. J Pers Soc Psychol 86:112–129. doi:10.1037/0022-3514.86.1.112

    Article  PubMed  Google Scholar 

  • Plomin R, Thompson LA (1993) Genetics and high cognitive ability. In: Bock GR, Ackrill K (eds) The origins and development of high ability. Wiley (CIBA Foundation Symposium 178), Chichester, pp 62–84

    Google Scholar 

  • Plomin R, DeFries JC, McClearn GE, McGuffin P (2008) Behavioral genetics, 5th edn. Worth, New York

    Google Scholar 

  • Polderman TJC, Gosso MF, Posthuma D, van Beijsterveldt TC, Heutink P, Verhulst FC et al (2006) A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence. Acta Neurol Belg 106:191

    PubMed  Google Scholar 

  • Posthuma D, Mulder E, Boomsma DI, De Geus EJC (2002) Genetic analysis of IQ, processing speed and stimulus-response incongruency effects. Biol Psychol 61:157–182. doi:10.1016/S0301-0511(02)00057-1

    Article  PubMed  Google Scholar 

  • Price TS, Freeman B, Craig IW, Petrill SA, Ebersole L, Plomin R (2000) Infant zygosity can be assigned by parental report questionnaire data. Twin Res 3:129–133. doi:10.1375/136905200320565391

    Article  PubMed  Google Scholar 

  • Putallaz M, Baldwin J, Selph H (2005) The Duke University talent identification program. High Abil Stud 16:41–54. doi:10.1080/13598130500115221

    Article  Google Scholar 

  • Raven JC, Court JH, Raven J (1996) Manual for Raven’s progressive matrices and vocabulary scales. Oxford University Press, Oxford

    Google Scholar 

  • Raven JC, Court JH, Raven J (1998) Manual for Raven’s progressive matrices. H.K. Lewis, London

    Google Scholar 

  • Rhea SA, Gross AA, Haberstick BC, Corley RP (2006) Colorado twin registry. Twin Res Hum Genet 9:941–949. doi:10.1375/twin.9.6.941

    Article  PubMed  Google Scholar 

  • Rietveld MJH, van der Valk JC, Bongers IL, Stroet TM, Slagboom PE, Boomsma DI (2000) Zygosity diagnosis in young twins by parental report. Twin Res Hum Genet 3:134–141. doi:10.1375/twin.3.3.134

    Article  Google Scholar 

  • Rijsdijk FV, Vernon PA, Boomsma DI (2002) Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study. Behav Genet 32:199–210. doi:10.1023/A:1016021128949

    Article  PubMed  Google Scholar 

  • Ronald A, Spinath F, Plomin R (2002) The aetiology of high cognitive ability in early childhood. High Abil Stud 13:103–114. doi:10.1080/1359813022000048761

    Article  Google Scholar 

  • Saudino KJ, Plomin R, Pedersen NL, McClearn GE (1994) The etiology of high and low cognitive ability during the second half of the life span. Intelligence 19:353–371. doi:10.1016/0160-2896(94)90007-8

    Article  Google Scholar 

  • Smith C (1974) Concordance in twins: methods and interpretation. Am J Hum Genet 26:454–466

    PubMed  Google Scholar 

  • Spearman C (1927) The abilities of man: their nature and measurement. Macmillan, New York

    Google Scholar 

  • Thompson LA, Detterman DK, Plomin R (1993) Differences in heritability across groups differing in ability, revisited. Behav Genet 23:331–336. doi:10.1007/BF01067433

    Article  PubMed  Google Scholar 

  • Thorndike RL, Hagen EP, Sattler JM (1986) Guide for administering and scoring the fourth edition: Stanford-Binet intelligence scale. Riverside, Chicago

    Google Scholar 

  • Turkheimer E, Haley A, Waldron M, D’Onofrio B, Gottesman II (2003) Socioeconomic status modifies heritability of IQ in young children. Psychol Sci 14:623–628. doi:10.1046/j.0956-7976.2003.psci_1475.x

    Article  PubMed  Google Scholar 

  • Wechsler D (1974) Manual for the Wechsler intelligence scale for children-revised. (Revised ed.). Psychological Corporation, New York

    Google Scholar 

  • Wechsler D (1981) Examiner’s manual: Wechsler adult intelligence scale: revised. The Psychological Corporation, New York

    Google Scholar 

  • Wechsler D (1991) WISC-III. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wechsler D (1992) Wechsler intelligence scale for children—third edition UK (WISC-IIIUK) manual. The Psychological Corporation, London

    Google Scholar 

  • Wechsler D (1997) Wechsler adult intelligence scale-III. The Psychological Corporation, New York

    Google Scholar 

  • Wright MJ, Martin NG (2004) Brisbane adolescent twin study: outline of study methods and research projects. Aust J Psychol 56:65–78. doi:10.1080/00049530410001734865

    Article  Google Scholar 

Download references

Acknowledgments

The GHCA consortium is supported by a grant from the John Templeton Foundation (#13575). The opinions expressed in this report are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. We thank Andrew McMillan for his support with the data management. Support for the GHCA consortium members’ twin studies include: Western Reserve Reading Project (Ohio): US National Institute of Child health and Human Development (HD038075 and HD046167). The Twins Early Development Study (United Kingdom): UK Medical Research Council (G0500079) and the US National Institute of Child Health and Human Development (HD44454 and HD46167). Minnesota Twin Family Study (USA): USPHS grants AA009367, R01 DA005147 & R01 DA013240. Colorado Twin Studies (USA): LTS: HD19802, HD010333, HD18426, MH043899, and the MacArthur Foundation; CTS: VA1296.07.1629B and DA011015; CLDRC: HD11681, HD027802. Twin Cognition Study (Australia): the Australian Research Council (A7960034, A79906588, A79801419, DP0212016, DP0343921) and The Human Frontier Science Program (RG0154.1998-B). The Netherlands Twin Register: Dutch Organization for Scientific Research (NWO 051.02.060; NWO 480-04-004; NWO 575-25-012; NWO/SPI 56-464-14192) and Human Frontiers of Science Program (RG0154/1998-B). D Posthuma is supported by NWO/MaGW VIDI-016-065-318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Plomin.

Additional information

Edited by Dick Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haworth, C.M.A., Wright, M.J., Martin, N.W. et al. A Twin Study of the Genetics of High Cognitive Ability Selected from 11,000 Twin Pairs in Six Studies from Four Countries. Behav Genet 39, 359–370 (2009). https://doi.org/10.1007/s10519-009-9262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-009-9262-3

Keywords

Navigation