Advertisement

Bulletin of Earthquake Engineering

, Volume 16, Issue 8, pp 3465–3496 | Cite as

The 2014 Earthquake Model of the Middle East: seismogenic sources

  • Laurentiu Danciu
  • Karin Şeşetyan
  • Mine Demircioglu
  • Levent Gülen
  • Mehdi Zare
  • Roberto Basili
  • Ata Elias
  • Shota Adamia
  • Nino Tsereteli
  • Hilal Yalçın
  • Murat Utkucu
  • Muhammad Asif Khan
  • Mohammad Sayab
  • Khaled Hessami
  • Andrea N. Rovida
  • Massimiliano Stucchi
  • Jean-Pierre Burg
  • Arkady Karakhanian
  • Hektor Babayan
  • Mher Avanesyan
  • Tahir Mammadli
  • Mahmood Al-Qaryouti
  • Doğan Kalafat
  • Otar Varazanashvili
  • Mustafa Erdik
  • Domenico Giardini
Original Research Paper

Abstract

The Earthquake Model of Middle East (EMME) project was carried out between 2010 and 2014 to provide a harmonized seismic hazard assessment without country border limitations. The result covers eleven countries: Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Jordan, Lebanon, Pakistan, Syria and Turkey, which span one of the seismically most active regions on Earth in response to complex interactions between four major tectonic plates i.e. Africa, Arabia, India and Eurasia. Destructive earthquakes with great loss of life and property are frequent within this region, as exemplified by the recent events of Izmit (Turkey, 1999), Bam (Iran, 2003), Kashmir (Pakistan, 2005), Van (Turkey, 2011), and Hindu Kush (Afghanistan, 2015). We summarize multidisciplinary data (seismicity, geology, and tectonics) compiled and used to characterize the spatial and temporal distribution of earthquakes over the investigated region. We describe the development process of the model including the delineation of seismogenic sources and the description of methods and parameters of earthquake recurrence models, all representing the current state of knowledge and practice in seismic hazard assessment. The resulting seismogenic source model includes seismic sources defined by geological evidence and active tectonic findings correlated with measured seismicity patterns. A total of 234 area sources fully cross-border-harmonized are combined with 778 seismically active faults along with background-smoothed seismicity. Recorded seismicity (both historical and instrumental) provides the input to estimate rates of earthquakes for area sources and background seismicity while geologic slip-rates are used to characterize fault-specific earthquake recurrences. Ultimately, alternative models of intrinsic uncertainties of data, procedures and models are considered when used for calculation of the seismic hazard. At variance to previous models of the EMME region, we provide a homogeneous seismic source model representing a consistent basis for the next generation of seismic hazard models within the region.

Keywords

Earthquakes Seismogenic sources Seismic source models Active faults Probabilistic seismic hazard assessment Earthquake Model of the Middle East—EMME 

Notes

Acknowledgements

We would like to acknowledge the collaborative efforts of various local and regional researchers throughout the project. The following individuals have contributed to EMME-SSM14 in a major way by providing data, specific source models, feedback and comments: Sinan Akkar, Arif Axhundov, Avetis Arakelyan, Tamaz Chelidze, Raffi Durgaryan, Mohsen Ghafory-Ashtiany, Rasheed Jaradat, Sepideh Karimi, Ozkan Kale, Saud Quraan, Dinçer Köksal, Yiğit Ince, Gianluca Valensise, Alexandre Gventcadze, Nino Gaguadze, Mohammad Reza Zolfaghari and M. Tolga Yilmaz. We thank Marco Pagani and Graeme Weatherill at Global Earthquake Model for their help and guidance throughout the project. We also thank Jochen Woessner (SHARE-Project), Stefano Parolai, Dino Bindi and Shahid Ullah (EMCA-Project) for their efforts on cross-border harmonization. Further, we would like to express our gratitude to the OpenQuake IT development team, which provided constant and steady support during the EMME project. More specifically, the support was granted by: Michele Simionato, Daniele Vigano, Lars Butler and Paul Henshaw. M. Sayab acknowledges his former organization, NCE in Geology, Peshawar University, for EMME-related research facilities. Finally, we thank Celine Beauval and an anonymous reviewer for their constructive comments and review of the manuscript.

Supplementary material

10518_2017_96_MOESM1_ESM.docx (11 mb)
Supplementary material 1 (DOCX 11310 kb)

References

  1. Adams J, Halchuck S, Allen T, Rogers G (2015) Canada’s 5th Generation seismic hazard model for the 2015 National Building Code of Canada. In: 11th Canadian Conference on Earthquake Engineering, 21–24 July, 2015, Victoria, Canada, Paper 93775Google Scholar
  2. Allen M, Jackson J, Walker R (2004) Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics. doi: 10.1029/2003TC001530 Google Scholar
  3. Ambraseys NN, Jackson JA, Melville CP (2002) Historical seismicity and tectonics: the case of the eastern mediterranean and the middle east, international handbook of earthquake and engineering seismology, V.81A, ISBN: 0-12-440652-1Google Scholar
  4. Anderson J (1979) Estimating the seismicity from geological structure for seismic-risk studies. Bull Seismol Soc Am 69:135–158Google Scholar
  5. Anderson JG, Luco JE (1983) Consequences of slip rate constraints on earthquake occurrence relations. Bull Seismol Soc Am 73:471–496Google Scholar
  6. Basili R, Valensise G, Vannoli P et al (2008) The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43. doi: 10.1016/j.tecto.2007.04.014 CrossRefGoogle Scholar
  7. Basili R, Kastelic V, Demircioglu MB, Garcia Moreno D, Nemser ES, Petricca P, Sboras SP, Besana-Ostman GM, Cabral J, Camelbeeck T, Caputo R, Danciu L, Domac H, Fonseca J, García-Mayordomo J, Giardini D, Glavatovic B, Gülen L, Ince Y, Pavlides S, Şeşetyan K, Tarabusi G, Tiberti MM, Utkucu M, Valensise G, Vanneste K, Vilanova S, Wössner J (2013a) The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/. doi: 10.6092/INGV.IT-SHARE-EDSF
  8. Basili R, Tiberti MM, Kastelic V et al (2013b) Integrating geologic fault data into tsunami hazard studies. Nat Hazards Earth Syst Sci 13:1025–1050. doi: 10.5194/nhess-13-1025-2013 CrossRefGoogle Scholar
  9. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897Google Scholar
  10. Berberian M, Yeats RS (2001) Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. J Struct Geol 23(2):563–584. doi: 10.1016/S0191-8141(00)00115-2 CrossRefGoogle Scholar
  11. Bommer JJ, Akkar S (2012) Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA. Earthq Spectra 28(1):1–15CrossRefGoogle Scholar
  12. Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthq Spectra 24:997–1009. doi: 10.1193/1.2977755 CrossRefGoogle Scholar
  13. Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res Solid Earth 97(B1):449–478. doi: 10.1029/91JB02165 CrossRefGoogle Scholar
  14. Copley A, Faridi M, Ghorashi M, Hollingsworth J, Jackson J, Nazari H, Oveisi B, Talebian M (2014) The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish-Iranian Plateau. Geophys J Int 196(1):15–21. doi: 10.1093/gji/ggt379 CrossRefGoogle Scholar
  15. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606Google Scholar
  16. Crowley H, Monelli D, Pagani M, Silva V, Weatherill G, Rao A (2015) The OpenQuake-engine user manual, global earthquake model (GEM) technical report 2015-09Google Scholar
  17. Danciu L, Giardini D (2015) Global Seismic Hazard Assessment Program—GSHAP legacy. Ann Geophys 58(1):S0109. doi: 10.4401/ag-6734 Google Scholar
  18. Danciu L, Kale Ö, Akkar S (2016a) The 2014 Earthquake Model of the Middle East: ground motion model and uncertainties. Bull Earthq Eng (2016). doi: 10.1007/s10518-016-9989-1 Google Scholar
  19. Danciu, L, Şeşetyan K, Demircioglu M, Erdik M, Giardini D (2016b) Input files for OpenQuake used to compute the seismic hazard of the Middle East region within the Earthquake Hazard Assessment of Middle East (EMME) Project. Available at: https://doi.org/10.12686/A3
  20. El-Hussain I, Deif A, Al-Jabri K, Toksoz N et al (2012) Probabilistic seismic hazard maps for the sultanate of Oman. Nat Hazards 64(1):173–210CrossRefGoogle Scholar
  21. Engdahl ER, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in Iran region. Geophys J Int 167:761–778CrossRefGoogle Scholar
  22. Erdik M, Alpay BY, Onur T, Şeşetyan K, Birgoren G (1999) Assessment of earthquake hazard in Turkey and neighboring regions. Ann Geofis 42:1125–1138Google Scholar
  23. Erdik M, Sesetyan K, Demircioglu MB, Tuzun C, Giardini D, Gülen L et al (2012) Assessment of seismic hazard in the Middle East and Caucasus: EMME (Earthquake Model of Middle East) project. In: Proceedings of 15th world conference on earthquake engineeringGoogle Scholar
  24. Field EH, Arrowsmith RJ, Biasi GP, Bird P, Dawson TE, Felzer KR et al (2014) Uniform California earthquake rupture forecast, version 3 (UCERF3)—the time-independent model. Bull Seismol Soc Am 104(3):1122–1180CrossRefGoogle Scholar
  25. Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8CrossRefGoogle Scholar
  26. Giardini D (1999) The global seismic hazard assessment program (GSHAP)—1992/1999. Ann Geophys 42(6). ISSN 2037-416XGoogle Scholar
  27. Giardini D, Woessner J, Danciu L, Crowley H, Cotton F, Grünthal G et al. (2013) Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource. doi: 10.12686/SED-00000001-SHARE
  28. Grünthal G (1985) The up-dated earthquake catalogue for the German Democratic republic and adjacent areas—statistical data characteristics and conclusions for hazard assessment. In: 3rd International symposium on the Analysis of seismicity and seismic risk, Liblice/Czechoslovakia, 17–22 June 1985 (proceedings vol I, pp 19–25)Google Scholar
  29. Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570. doi: 10.1007/s10950-012-9302-y CrossRefGoogle Scholar
  30. Guidoboni E, Comastri A, Traina G (1994) Catalogue of ancient earthquakes in the mediterranean area up to the 10th century, SGAGoogle Scholar
  31. Gülen L, Pınar A, Kalafat D, Özel N, Horasan G, Yılmazer M, Işıkara AM (2002) Surface fault breaks, aftershock distribution, and rupture process of the August 17, 1999 Izmit, Turkey Earthquake. Bull Seismol Soc Am 92:230–244CrossRefGoogle Scholar
  32. Gülen L, Şeşetyan K, Adamia S, Sadradze N, Gvencadze A, Karakhanyan A et al (2014) Earthquake model of the middle east (Emme) project: active faults and seismic sources second European conference on earthquake engineering and seismology, 2ECEES, 24–29 August 2014, Istanbul, TurkeyGoogle Scholar
  33. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:184–188Google Scholar
  34. Hiemer S, Woessner J, Basili R, Danciu L et al (2014) A kernel-smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe. Geophys J Int. doi: 10.1093/gji/ggu186 Google Scholar
  35. Hofmann R (1996) Individual faults can’t produce a Gutenberg-Richter earthquake recurrence. Eng Geol 43:5–9. doi: 10.1016/0013-7952(95)00085-2 CrossRefGoogle Scholar
  36. Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245Google Scholar
  37. Kafka AL (2007) Does seismicity delineate zones where future large earthquakes are likely to occur in intraplate environments? Geol Soc Am Spec Papers 425:35–48. doi: 10.1130/2007.2425(03) Google Scholar
  38. Kanamori HD, Anderson DL (1975) Theoretical basis for some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1096Google Scholar
  39. Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59(4):674–700CrossRefGoogle Scholar
  40. Knopoff L (1964) The statistics of earthquakes in Sourthern California. Bull Seismol Soc Am 54(6):1871–1873Google Scholar
  41. Kulkarni RB, Youngs RR, Coppersmith KJ (1984) Assessment of confidence intervals for results of seismic hazard analysis. In: Proceedings of the eighth world conference on earthquake engineering, San Francisco, pp 263–270Google Scholar
  42. Marco S, Stein M, Agnon A, Ron H (1996) Long-term earthquake clustering: a 50,000-year paleoseismic record in the Dead Sea Graben. J Geophys Res 101(B3):6179–6191. doi: 10.1029/95JB01587 CrossRefGoogle Scholar
  43. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gürkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V et al. (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105(B3):5695–5719CrossRefGoogle Scholar
  44. McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155(1):126–138. doi: 10.1046/j.1365-246X.2003.02023.x CrossRefGoogle Scholar
  45. Meletti C, Galadini F, Valensise G, Stucchi M, Basili R et al (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450(1):85–108CrossRefGoogle Scholar
  46. Mignan A, Danciu L, Giardini D (2015) Reassessment of the maximum fault rupture length of strike-slip earthquakes and inference on Mmax in the Anatolian Peninsula, Turkey. Seismol Res Lett 86(3):890–900CrossRefGoogle Scholar
  47. Molnar P (1979) Earthquake recurrence intervals and plate tectonics. Bull Seismol Soc Am 69:115–133Google Scholar
  48. Monelli D, Pagani M, Weatherill G, Danciu L, Garcia J (2014) Modeling distributed seismicity for probabilistic seismic-hazard analysis: implementation and insights with the OpenQuake engine. Bull Seismol Soc Am 104(4):1636–1649. doi: 10.1785/0120130309 CrossRefGoogle Scholar
  49. Moschetti MP, Powers PM, Petersen MD, Boyd OS, Chen R, Field EH, Frankel AD, Haller KM, Harmsen SC, Mueller CS, Wheeler RL (2015) Seismic source characterization for the 2014 update of the US national seismic hazard model. Earthq Spectra 31(S1):31–57CrossRefGoogle Scholar
  50. Mueller CS (2010) The influence of maximum magnitude on seismic-hazard estimates in the central and eastern United States. Bull Seismol Soc Am 100(2):699–711. doi: 10.1785/0120090114 CrossRefGoogle Scholar
  51. Musson RMW (1999) Probabilistic seismic hazard maps for the North Balkan Region. Ann Geofis 42(6):1109–1124Google Scholar
  52. Musson RMW (2009) Subduction in the Western Makran: the historian’s contribution. J Geol Soc Lond 166:387–391CrossRefGoogle Scholar
  53. Musson RM, Sellami S, Brüstle W (2009) Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c). Swiss J Geosci 102(1):107–120CrossRefGoogle Scholar
  54. National Research Council (US) (1988) Panel on Seismic Hazard Analysis, Keiiti Aki, National Research Council (US). Committee on Seismology, National Research Council (US). Board on Earth Sciences, National Research Council (US). Commission on Physical Sciences, Mathematics and Resources. Probabilistic Seismic Hazard Analysis. National AcademiesGoogle Scholar
  55. Negredo AM, Replumaz A, Villasenor A, Guillot S (2007) Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region. Earth Planet Sci Lett 259:212–225CrossRefGoogle Scholar
  56. Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V et al (2014) OpenQuake-engine: an open hazard (and risk) software for the Global Earthquake Model. Seismol Res Lett 85:692–702. doi: 10.1785/0220130087 CrossRefGoogle Scholar
  57. Pegler G, Das S (1998) An enhanced image of the Pamir-Hindu Kush seismic zone from relocated earthquake hypocentres. Geophys J Int 134:573–595. doi: 10.1046/j.1365-246x.1998.00582.x CrossRefGoogle Scholar
  58. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS, Field N (2015) The 2014 United States national seismic hazard model. Earthq Spectra 31(S1):S1–S30CrossRefGoogle Scholar
  59. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–82. J Geophys Res 90:5479–5495CrossRefGoogle Scholar
  60. Reilinger R et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(BO5411):1–26. doi: 10.1929/2005JBOO4051 Google Scholar
  61. Renault P (2014) Approach and challenges for the seismic hazard assessment of nuclear power plants: the Swiss Experience. Boll di Geof Teorica ed Applicata 55(1):149–164. doi: 10.4430/bgta0089 Google Scholar
  62. Ruleman CA, Crone AJ, Machette MN, Haller KM, Rukstales KS (2007) Map and database of probable and possible Quaternary faults in Afghanistan: U.S. Geological Survey Open-File Report 2007-1103, 1 plateGoogle Scholar
  63. Schmid SM, Slejko D (2009) Seismic source characterization of the Alpine foreland in the context of a probabilistic seismic hazard analysis by PEGASOS Expert Group 1 (EG1a). Swiss J Geosci 102(1):121–148. doi: 10.1007/s00015-008-1300-2 CrossRefGoogle Scholar
  64. Schuster RL, Alford D (2004) Usoi landslide dam and lake Sarez, Pamir Mountains, Tajikistan. Environ Eng Geosci 10(2):151–168CrossRefGoogle Scholar
  65. Schwartz DP, Coppersmith KJ (1984) Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. J Geophys Res. doi: 10.1029/JB089iB07p05681 Google Scholar
  66. Schwartz DP, Coppersmith KJ (1986) Seismic hazards: new trends in analysis using geologic data. National Research Council, Washington, DC (USA). Geophysics Study Committee; 266, pp 215–230; DOE/ER/12018–T10Google Scholar
  67. Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res Solid Earth. doi: 10.1029/2000JB000033 Google Scholar
  68. Şeşetyan K, Danciu L, Demircioglu M, Giardini D, Erdik M, Akkar S, Gülen L, Zare M, et al. (2017) The 2014 Earthquake Model of the Middle East: overview and results (this issue)Google Scholar
  69. Sippl C, Schurr B, Yuan X et al (2013) Geometry of the Pamir Hindu Kush intermediate depth earthquake zone from local seismic data. J Geophys Res 118(4):1438–1457. doi: 10.1002/jgrb.50128 CrossRefGoogle Scholar
  70. Stepp JC (1972) Analysis of completeness of earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. National Oceanic and Atmospheric Administration Environmental Research Laboratories, Boulder Colorado, p 80302Google Scholar
  71. Stirling M, McVerry G, Gerstenberger M et al (2012) National seismic hazard model for New Zealand: 2010 update. Bull Seismol Soc Am 102:1514–1542. doi: 10.1785/0120110170 CrossRefGoogle Scholar
  72. Stucchi M, Rovida A, Gomez Capera AA et al (2012) The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J Seismol 17:523–544. doi: 10.1007/s10950-012-9335-2 CrossRefGoogle Scholar
  73. Tatar M, Hatzfeld D, Martinod J, Walpersdorf A, Ghafori-Ashtiany M, Chéry J (2002) The present-day deformation of the central Zagros from GPS measurements. Geophys Res Lett. doi: 10.1029/2002GL015427 Google Scholar
  74. Tavakoli B, Ghafory-Ashtiany M (1999) Seismic hazard assessment of Iran. Ann Geophys. doi: 10.4401/ag-3781 Google Scholar
  75. Ullah S, Bindi D, Pilz M, Danciu L, Weatherill G et al (2015) Probabilistic seismic hazard assessment for Central Asia. Ann Geophys. doi: 10.4401/ag-6687 Google Scholar
  76. Vilanova SP, Nemser ES, Besana-Ostman GM, Bezzeghoud M et al (2014) Incorporating descriptive metadata into seismic source zone models for seismic-hazard assessment: a case study of the Azores-West Iberian Region. Bull Seismol Soc Am 104(3):1212–1229. doi: 10.1785/0120130210 CrossRefGoogle Scholar
  77. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346Google Scholar
  78. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  79. Wesnousky SG, Scholz CH, Shimazaki K, Matsuda T (1983) Earthquake frequency distribution and the mechanics of faulting. J Geophys Res 88:9331–9340CrossRefGoogle Scholar
  80. Wheeler RL (2009) Methods of Mmax estimation east of the Rocky Mountains: U.S. Geological Survey Open-File Report 2009–1018. http://pubs.usgs.gov/of/2009/1018/. Accessed 15 Nov 2015
  81. Wiemer S, García-Fernández M, Burg JP (2009) Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d). Swiss J Geol 102(1):189–209. doi: 10.1007/s00015-009-1311-7 CrossRefGoogle Scholar
  82. Wills CJ, Ray J, Weldon RJ, Bryant WA (2008) California Fault Parameters for the National Seismic Hazard Maps and Working Group on California Earthquake Probabilities, US Geological Survey Open File Report 2007-1437AGoogle Scholar
  83. Woessner J, Danciu L, Giardini D, Crowley H, Cotton F, Grünthal G et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596CrossRefGoogle Scholar
  84. Yadav RBS, Tsapanos TM, Yusuf Bayrak, Koravos G Ch (2013) Probabilistic Appraisal of Earthquake Hazard Parameters Deduced from a Bayesian Approach in the Northwest Frontier of the Himalayas. Pure Appl Geophys 170(3):283–297. doi: 10.1007/s00024-012-0488-2 CrossRefGoogle Scholar
  85. Yeats RS (2012) Active faults of the world. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  86. Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75:939–964Google Scholar
  87. Zare M, Amini H, Yazdi P, Şeşetyan K, Demircioglu MB et al. (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Laurentiu Danciu
    • 1
  • Karin Şeşetyan
    • 2
  • Mine Demircioglu
    • 2
  • Levent Gülen
    • 3
  • Mehdi Zare
    • 4
  • Roberto Basili
    • 5
  • Ata Elias
    • 6
  • Shota Adamia
    • 7
  • Nino Tsereteli
    • 7
  • Hilal Yalçın
    • 3
  • Murat Utkucu
    • 3
  • Muhammad Asif Khan
    • 8
  • Mohammad Sayab
    • 9
  • Khaled Hessami
    • 4
  • Andrea N. Rovida
    • 10
  • Massimiliano Stucchi
    • 11
  • Jean-Pierre Burg
    • 1
  • Arkady Karakhanian
    • 12
  • Hektor Babayan
    • 13
  • Mher Avanesyan
    • 12
  • Tahir Mammadli
    • 14
  • Mahmood Al-Qaryouti
    • 15
  • Doğan Kalafat
    • 2
  • Otar Varazanashvili
    • 7
  • Mustafa Erdik
    • 2
  • Domenico Giardini
    • 1
  1. 1.Department of Earth ScienceETH ZurichZurichSwitzerland
  2. 2.Kandilli Observatory and Earthquake Research InstituteBoğaziçi UniversityIstanbulTurkey
  3. 3.Department of Geophysical EngineeringSakarya UniversitySerdivanTurkey
  4. 4.International Institute of Earthquake Engineering and SeismologyTehranIran
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaSezione di Roma 1RomeItaly
  6. 6.Faculté des Sciences, Université Saint JosephBeirutLebanon
  7. 7.M. Nodia Institute of GeophysicsI. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  8. 8.Karakoram International UniversityGilgitPakistan
  9. 9.Geological Survey of FinlandEspooFinland
  10. 10.Istituto Nazionale di Geofisica e VulcanologiaMilanItaly
  11. 11.European Centre for Training and Research in Earthquake Engineering (EUCENTRE)PaviaItaly
  12. 12.Institute of Geological SciencesArmenian Academy of SciencesYerevanRepublic of Armenia
  13. 13.Georisk Scientific Research CompanyYerevanRepublic of Armenia
  14. 14.Republican Seismic Survey Center of Azerbaijan National Academy of SciencesBakuAzerbaijan
  15. 15.Jordan Seismological ObservatoryMinistry of Energy and Mineral ResourcesAmmanJordan

Personalised recommendations