Skip to main content
Log in

Mesenchymal Stem Cells from the Deciduous Tooth Pulp Lose their Ability to Suppress the Differentiation of Dendritic Cells during Long-Term Culturing

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

A culture of cells expressing markers of mesenchymal stem cells (MSC) (CD73, CD90, CD44, CD29, and CD49b), but not hematopoietic cell markers, and capable of multilineage differentiation was isolated from the deciduous tooth pulp. Co-culturing with immature dendritic cells in the presence of LPS did not reveal an ability of the MSC to suppress the maturation of dendritic cells. On the contrary, co-culturing of MSC with monocytes in the presence of granulocyte-macrophage CSF and IL-4 led to complete suppression of monocyte differentiation into dendritic cells. However, long-term culturing of MSC from dental pulp showed that by the passage 11, they almost completely lose their suppressor ability. These results indicate that the immunological properties of MSC can change during culturing without changing their phenotypic markers. This should be taken into account when creating biomedical cell products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019;8(8):886. doi: https://doi.org/10.3390/cells8080886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl. Med. 2017;6(12):2173-2185. doi: https://doi.org/10.1002/sctm.17-0129

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol. Life Sci. 2016;73(17):3311-3321. doi: https://doi.org/10.1007/s00018-016-2229-7

    Article  CAS  PubMed  Google Scholar 

  4. Purwaningrum M, Jamilah NS, Purbantoro SD, Sawangmake C, Nantavisai S. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J. Vet. Sci. 2021;22(6):e74. doi: https://doi.org/10.4142/jvs.2021.22.e74

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ong WK, Chakraborty S, Sugii S. Adipose tissue: understanding the heterogeneity of stem cells for regenerative medicine. Biomolecules. 2021;11(7):918. doi: https://doi.org/10.3390/biom11070918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res. 2009;88(9):792-806. doi: https://doi.org/10.1177/0022034509340867

  7. Yarygin KN, Lupatov AY, Sukhikh GT. Modulation of immune responses by mesenchymal stromal cells. Bull. Exp. Biol. Med. 2016;161(4):561-565. doi: https://doi.org/10.1007/s10517-016-3461-8

    Article  CAS  PubMed  Google Scholar 

  8. Hwang JJ, Rim YA, Nam Y, Ju JH. Recent developments in clinical applications of mesenchymal stem cells in the treatment of rheumatoid arthritis and osteoarthritis. Front. Immunol. 2021;12:631291. doi: https://doi.org/10.3389/fimmu.2021.631291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. English K, Wood KJ. Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harb. Perspect. Med. 2013;3(5):a015560. doi: https://doi.org/10.1101/cshperspect.a015560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nobari S, Rezvan M, Dashtestani F, Gangi M, Keshmiri Neghab H. Cellular therapy: the hope for Covid-19. Avicenna J. Med. Biotechnol. 2022;14(2):104-113. doi: https://doi.org/10.18502/ajmb.v14i2.8883

    Article  PubMed  PubMed Central  Google Scholar 

  11. Christopherson K 2nd, Hromas R. Chemokine regulation of normal and pathologic immune responses. Stem Cells. 2001;19(5):388-396. doi: https://doi.org/10.1634/stemcells.19-5-388

    Article  CAS  PubMed  Google Scholar 

  12. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120-4126. doi: https://doi.org/10.1182/blood-2004-02-0586

    Article  CAS  PubMed  Google Scholar 

  13. Lupatov AYu, Karalkin PA, Moldaver MV, Burunova VV, Poltavtseva RA, Gabibullaeva ZG, Pavlovich SV, Yarygin KN, Sukhikh GT. Bone marrow mesenchymal stem cells suppress differentiation of allogeneic dendritic cells in vitro and do not affect their maturation. Immunologiya. 2011;32(3):122-127. Russian.

  14. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. doi: https://doi.org/10.1080/14653240600855905

  15. Kamata T, Takada Y. Direct binding of collagen to the I domain of integrin alpha 2 beta 1 (VLA-2, CD49b/CD29) in a divalent cation-independent manner. J. Biol. Chem. 1994;269(42):26 006-26 010.

  16. Lupatov AY, Karalkin PA, Suzdal'tseva YG, Burunova VV, Yarygin VN, Yarygin KN. Cytofluorometric analysis of phenotypes of human bone marrow and umbilical fibroblast-like cells. Bull. Exp. Biol. Med. 2006;142(4):521-526. doi: https://doi.org/10.1007/s10517-006-0407-6

    Article  PubMed  Google Scholar 

  17. Xu Y, Wang AT, Xiao JH. CD44 mediates hyaluronan to promote the differentiation of human amniotic mesenchymal stem cells into chondrocytes. Biotechnol. Lett. 2023;45(3):411-422. doi: https://doi.org/10.1007/s10529-022-03322-2

    Article  CAS  PubMed  Google Scholar 

  18. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009;113(26):6576-6583. doi: https://doi.org/10.1182/blood-2009-02-203943

    Article  CAS  PubMed  Google Scholar 

  19. Jung YJ, Ju SY, Yoo ES, Cho S, Cho KA, Woo SY, Seoh JY, Park JW, Han HS, Ryu KH. MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy. 2007;9(5):451-458. doi: https://doi.org/10.1080/14653240701452057.

    Article  CAS  PubMed  Google Scholar 

  20. Lupatov AY, Saryglar RY, Vtorushina VV, Poltavtseva RA, Bystrykh OA, Chuprynin VD, Krechetova LV, Pavlovich SV, Yarygin KN, Sukhikh GT. Mesenchymal stromal cells isolated from ectopic but not eutopic endometrium display pronounced immunomodulatory activity in vitro. Biomedicines. 2021;9(10):1286. doi: https://doi.org/10.3390/biomedicines9101286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saryglar RY, Lupatov AY, Yarygin KN. Colorectal cancer and tumor stromal cells have different effects on the differentiation and maturation of dendritic cells in vitro. Bull. Exp. Biol. Med. 2023;174(4):533-537. doi: https://doi.org/10.1007/s10517-023-05743-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Lupatov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 249-256, December, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupatov, A.Y., Vakhrushev, I.V., Saryglar, R.Y. et al. Mesenchymal Stem Cells from the Deciduous Tooth Pulp Lose their Ability to Suppress the Differentiation of Dendritic Cells during Long-Term Culturing. Bull Exp Biol Med 176, 672–679 (2024). https://doi.org/10.1007/s10517-024-06089-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06089-w

Keywords

Navigation