Skip to main content

Advertisement

Log in

Specific Antibodies to the Fragments of Meningococcal IgA1 Protease during the Formation of Immunity to Bacterial Infections

  • IMMUNOLOGY AND MICROBIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

A Correction to this article was published on 01 September 2022

This article has been updated

The features of individual fragments of IgA1 protease of Neisseria meningitidis serogroup B during the formation of immunity to bacterial infections in animals and humans were studied. The antibodies to the immunogenic regions of the studied proteins are also detected in mice infected with some bacterial pathogens and in humans with bacterial meningitis. A region of IgA1 protease was identified that is not capable of producing antibodies during immunization of animals, but that detects homologous antibodies in the blood of humans and animals recovered from bacterial infections. It has been suggested that this fragment plays a regulatory role in the process of immunogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Kabakov AV, Lykov AP, Morozov DV, Kazakov OV, Poveshchenko AF, Raiter TV, Strunkin DN, Konenkov VI. Phenotypical characteristics of chemically induced mammary tumor. Bull. Exp. Biol. Med. 2017;163(4):490-492. doi: https://doi.org/10.1007/s10517-017-3835-6

    Article  CAS  PubMed  Google Scholar 

  2. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473(4):347-364. doi: https://doi.org/10.1042/BJ20150942

    Article  CAS  PubMed  Google Scholar 

  3. Abue M, Yokoyama M, Shibuya R, Tamai K, Yamaguchi K, Sato I, Tanaka N, Hamada S, Shimosegawa T, Sugamura K, Satoh K. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int. J. Oncol. 2015;46(2):539-547. doi: https://doi.org/10.3892/ijo.2014.2743

    Article  CAS  PubMed  Google Scholar 

  4. Allison RR, Moghissi K. Photodynamic Therapy (PDT): PDT mechanisms. Clin. Endosc. 2013;46(1):24-29. doi: https://doi.org/10.5946/ce.2013.46.1.24

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aniogo EC, Plackal Adimuriyil George B, Abrahamse H. The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int. 2019;19:91. doi: https://doi.org/10.1186/s12935-019-0815-0

  6. Anzengruber F, Avci P, de Freitas LF, Hamblin MR. T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it? Photochem. Photobiol. Sci. 2015;14(8):1492-1509. doi: 10.1039/c4pp00455h

  7. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122-1143. doi: https://doi.org/10.7150/thno.11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cava C, Novello C, Martelli C, Lodico A, Ottobrini L, Piccotti F, Truffi M, Corsi F, Bertoli G, Castiglioni I. Theranostic application of miR-429 in HER2+ breast cancer. Theranostics. 2020;10(1):50-61. doi: https://doi.org/10.7150/thno.36274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A, Siegel RL. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019;69(6):438-451. doi: https://doi.org/10.3322/caac.21583. Epub 2019 Oct 2

    Article  PubMed  Google Scholar 

  10. Kong LY, Xue M, Zhang QC, Su CF. In vivo and in vitro effects of microRNA-27a on proliferation, migration and invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/β-catenin signaling pathway. Oncotarget. 2017;8(9):15 507-15 519. doi: 10.18632/oncotarget.14662

  11. Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-invasive biomarkers for early detection of breast cancer. Cancers (Basel). 2020;12(10):2767. doi: https://doi.org/10.3390/cancers12102767

    Article  CAS  PubMed Central  Google Scholar 

  12. Matsuzaki J, Suzuki H. Role of microRNAs-221/222 in digestive systems. J. Clin. Med. 2015;4(8):1566-1577. doi: https://doi.org/10.3390/jcm4081566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci. 2002;1(1):1-21. doi: https://doi.org/10.1039/b108586g

    Article  CAS  PubMed  Google Scholar 

  14. Wachowska M, Muchowicz A, Demkow U. Immunological aspects of antitumor photodynamic therapy outcome. Cent. Eur. J. Immunol. 2015;40(4):481-485. doi: https://doi.org/10.5114/ceji.2015.56974

    Article  CAS  PubMed  Google Scholar 

  15. Yang CH, Pfeffer SR, Sims M, Yue J, Wang Y, Linga VG, Paulus E, Davidoff AM, Pfeffer LM. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J. Biol. Chem. 2015;290(10):6037-6046. doi: https://doi.org/10.1074/jbc.M114.632125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Zhigis.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 173, No. 4, pp. 436-439, April, 2022

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotel’nikova, O.V., Prokopenko, Y.A., Zinchenko, A.A. et al. Specific Antibodies to the Fragments of Meningococcal IgA1 Protease during the Formation of Immunity to Bacterial Infections. Bull Exp Biol Med 173, 429–432 (2022). https://doi.org/10.1007/s10517-022-05580-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05580-6

Key Words

Navigation