Skip to main content

Advertisement

Log in

Antibacterial Activity of Lactobacillus plantarum Supernatant on Non-Fermenting Gram-Negative Bacteria

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of the L. plantarum strain supernatant on the growth of culture and biofilm of non-fermenting bacteria of the genera Pseudomonas, Achromobacter, and Burkholderia. To obtain a supernatant, the culture of L. plantarum was grown for 48 h at 37°C on a Lactic broth nutrient medium with casein peptone, then centrifuged and filtered through a 0.22-μm Millipore filter. Antimicrobial activity was determined by broth microdilution assay. The inhibitory effect of the supernatant on the growth of bacteria of all three genera was demonstrated. The maximum inhibition was observed for P. aeruginosa (by 13 times compared to the control). For bacteria of the Achromobacter and Burkholderia genera, the inhibition was less pronounced: by 7 and 6 times, respectively. The supernatant also inhibited biofilm formation by P. aeruginosa and A. ruhlandii, but did not affect formed biofilm. Thus, the L. plantarum supernatant obtained by us exhibited pronounced antimicrobial activity against non-fermenting bacteria, the causative agents of nosocomial infections, especially in immunocompromised individuals, very often in cystic fibrosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danilova ТA, Adzhieva AA, Danilina GA, Polyakov NB, Soloviev AI, Zhukhovitsky VG. Antimicrobial Activity of Supernatant of Lactobacillus plantarum against Pathogenic Microorganisms. Bull. Exp. Biol. Med. 2019;167(6):751-754. doi: https://doi.org/10.1007/s10517-019-04615-9

    Article  CAS  Google Scholar 

  2. Danilova TA, Danilina GA, Adzhieva AA, Minko AG, Nikolaeva TN, Zhukhovitskii VG, Pronin AV. Effects of Miramistin and Phosprenil on Microbial Biofilms. Bull. Exp. Biol. Med. 2017;163(4):439-442. doi: https://doi.org/10.1007/s10517-017-3823-x

    Article  CAS  PubMed  Google Scholar 

  3. Zaslavskaya MI, Makhrova TV, Aleksandrova NA, Ignatova NI, Belova IV, Tochilina AG, Solovyeva IV. Prospects for Using Bacteriocins of Normal Microbiota in Antibacterial Therapy (Review). Sovremen. Tekhnol. Med. 2019;11(3):136-145 doi: https://doi.org/10.17691/stm2019.11.3.17

    Article  Google Scholar 

  4. Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front. Microbiol. 2016;7:464. doi: https://doi.org/10.3389/fmicb.2016.00464

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cotter PD, Ross RP, Hill C. Bacteriocins — a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013;11(2):95- 105. doi: https://doi.org/10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  6. Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J. Clin. Pathol. 2016;69(3):187-203. doi: https://doi.org/10.1136/jclinpath-2015-202976

    Article  PubMed  Google Scholar 

  7. Dicks LMT, Dreyer L, Smith C, van Staden AD. A Review: The fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front. Microbiol. 2018;9:2297. doi: https://doi.org/10.3389/fmicb.2018.02297

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu YW, Liong MT, Tsai YC. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J. Microbiol. 2018;56(9):601-613. doi: https://doi.org/10.1007/s12275-018-8079-2

    Article  PubMed  Google Scholar 

  9. Man LL, Xiang DJ. Characterization of a broad spectrum bacteriocin produced by Lactobacillus plantarum MXG- 68 from Inner Mongolia traditional fermented koumiss. Folia Microbiol. (Praha). 2019;64(6):821-834. doi: https://doi.org/10.1007/s12223-019-00697-0

    Article  CAS  PubMed  Google Scholar 

  10. O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 1998;28(3):449-461. doi: https://doi.org/10.1046/j.1365-2958.1998.00797.x

    Article  PubMed  Google Scholar 

  11. Prabhurajeshwar C, Chandrakanth RK. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed. J. 2017;40(5):270-283. doi: https://doi.org/10.1016/j.bj.2017.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raheem A, Liang L, Zhang G, Cui S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front. Immunol. 2021;12:616713. doi: https://doi.org/10.3389/fimmu.2021.616713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Danilova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 173, No. 1, pp. 71-74, January, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilova, T.A., Danilina, G.A., Adzhieva, A.A. et al. Antibacterial Activity of Lactobacillus plantarum Supernatant on Non-Fermenting Gram-Negative Bacteria. Bull Exp Biol Med 173, 59–62 (2022). https://doi.org/10.1007/s10517-022-05493-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05493-4

Key Words

Navigation