Skip to main content
Log in

Ischemic Preconditioning of the Kidney

  • REVIEWS
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The phenomenon of ischemic preconditioning was discovered in 1986 in experiments with the heart, and then it was observed in almost all organs, the kidneys included. This phenomenon is underlain by conditioning of the tissues with short ischemia/reperfusion cycles intended for subsequent exposure to pathological ischemia. Despite the kidneys are not viewed as so vital organs as the brain or the heart, the acute ischemic injury to kidneys is a widespread pathology responsible for the yearly death of almost 2 million patients, while the number of patients with chronic kidney disease is estimated as hundreds of millions or nearly 10% adult population the world over. Currently, it is believed that adaptation of the kidneys to ischemia by preconditioning is the most effective way to prevent the development of acute kidney injury, so deep insight into its molecular mechanisms will be a launch pad for creating the nephroprotective therapy by elevating renal tolerance to oxygen deficiency. This review focuses on the key signaling pathways of kidney ischemic preconditioning, the potential pharmacological mimetics of its key elements, and the limitations of this therapeutic avenue associated with age-related decline of ischemic tolerance of the kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ermolenko VM, Nikolaev AYu. Acute Renal Failure. Moscow, 2010. Russian.

    Google Scholar 

  2. Meerson FZ. Adaptation, Stress, and Prophylaxis. Moscow, 1981. Russian.

    Google Scholar 

  3. Abete P, Cacciatore F, Testa G, Della-Morte D, Galizia G, de Santis D, Calabrese C, Cioppa A, Ferrara N, Rengo F. Ischemic preconditioning in the aging heart: from bench to bedside. Ageing Res. Rev. 2010;9(2):153-162. doi: https://doi.org/10.1016/j.arr.2009.07.001

    Article  PubMed  Google Scholar 

  4. Andrianova NV, Jankauskas SS, Zorova LD, Pevzner IB, Popkov VA, Silachev DN, Plotnikov EY, Zorov DB. Mechanisms of age-dependent loss of dietary restriction protective effects in acute kidney injury. Cells. 2018;7(10):178. doi: https://doi.org/10.3390/cells7100178

    Article  CAS  PubMed Central  Google Scholar 

  5. Andrianova NV, Zorova LD, Pevzner IB, Popkov VA, Chernikov VP, Silachev DN, Plotnikov EY, Zorov DB. Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging (Albany NY). 2020;12(18):18 693-18 715. doi: 10.18632/aging.103960

  6. Bagnasco S, Good D, Balaban R, Burg M. Lactate production in isolated segments of the rat nephron. Am. J. Physiol. 1985; 248(4, Pt 2):F522-F526. doi: 10.1152/ajprenal.1985. 248.4.F522

  7. Chatauret N, Badet L, Barrou B, Hauet T. Ischemia-reperfusion: From cell biology to acute kidney injury. Prog. Urol. 2014; 24(Suppl. 1):S4-S12. doi: https://doi.org/10.1016/S1166-7087(14)70057-0

    Article  PubMed  Google Scholar 

  8. Della-Morte D, Cacciatore F, Salsano E, Pirozzi G, Del Genio MT, D’Antonio I, Gargiulo G, Palmirotta R, Guadagni F, Rundek T, Abete P. Age-related reduction of cerebral ischemic preconditioning: myth or reality? Clin. Interv. Aging. 2013;8:1055-1061. doi: https://doi.org/10.2147/CIA.S47462

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diwan V, Kant R, Jaggi AS, Singh N, Singh D. Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol. Cell. Biochem. 2008;315(1-2):195-201. doi: https://doi.org/10.1007/s11010-008-9808-3

    Article  CAS  PubMed  Google Scholar 

  10. Haase VH. Hypoxia-inducible factors in the kidney. Am. J. Physiol. Renal Physiol. 2006;291(2):F271-F281. doi: https://doi.org/10.1152/ajprenal.00071.2006

    Article  CAS  PubMed  Google Scholar 

  11. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc. Res. 2004;61(3):448-460. doi: https://doi.org/10.1016/j.cardiores.2003.09.024

    Article  CAS  PubMed  Google Scholar 

  12. Honda N, Hishida A. Pathophysiology of experimental nonoliguric acute renal failure. Kidney Int. 1993;43(3):513-521. doi: https://doi.org/10.1038/ki.1993.78

    Article  CAS  PubMed  Google Scholar 

  13. Jankauskas SS, Pevzner IB, Andrianova NV, Zorova LD, Popkov VA, Silachev DN, Kolosova NG, Plotnikov EY, Zorov DB. The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Sci. Rep. 2017;7:44430. doi: https://doi.org/10.1038/srep44430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jankauskas SS, Silachev DN, Andrianova NV, Pevzner IB, Zorova LD, Popkov VA, Plotnikov EY, Zorov DB. Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle. 2018;17(11):1291-1309. doi: https://doi.org/10.1080/15384101.2018.1482149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joo JD, Kim M, D’Agati VD, Lee HT. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice. J. Am. Soc. Nephrol. 2006;17(11):3115-3123. doi: https://doi.org/10.1681/ASN.2006050424

    Article  CAS  PubMed  Google Scholar 

  16. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role of glycogen synthase kinase-3beta in cardioprotection. Circ. Res. 2009;104(11):1240-1252. doi: https://doi.org/10.1161/CIRCRESAHA.109.197996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am. J. Physiol. Renal Physiol. 2015;309(10):F821-F834. doi: https://doi.org/10.1152/ajprenal.00224.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim DH, Kim JY, Yu BP, Chung HY. The activation of NFkappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology. 2008;9(1):33-47. doi: https://doi.org/10.1007/s10522-007-9114-6

    Article  CAS  PubMed  Google Scholar 

  19. Kim J, Jang HS, Park KM. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am. J. Physiol. Renal Physiol. 2010;298(1):F158-F166. doi: https://doi.org/10.1152/ajprenal.00474.2009

    Article  CAS  PubMed  Google Scholar 

  20. Laplante M, Sabatini DM. mTOR signaling at a glance. J. Cell Sci. 2009;122(Pt 20):3589-3594. doi: https://doi.org/10.1242/jcs.051011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee HT, Emala CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am. J. Physiol. Renal Physiol. 2000;278(3):F380-F387. doi: https://doi.org/10.1152/ajprenal.2000.278.3.F380

    Article  CAS  PubMed  Google Scholar 

  22. Menting TP, Wever KE, Ozdemir-van Brunschot DM, Van der Vliet DJ, Rovers MM, Warle MC. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Database Syst. Rev. 2017;3(3):CD010777. doi: https://doi.org/10.1002/14651858.CD010777.pub2

  23. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124-1136. doi: https://doi.org/10.1161/01.cir.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  24. Ortiz A, Justo P, Sanz A, Lorz C, Egido J. Targeting apoptosis in acute tubular injury. Biochem. Pharmacol. 2003;66(8):1589-1594. doi: https://doi.org/10.1016/s0006-2952(03)00515-x

    Article  CAS  PubMed  Google Scholar 

  25. Park KM, Chen A, Bonventre JV. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J. Biol. Chem. 2001;276(15):11870-11876. doi: https://doi.org/10.1074/jbc.M007518200

    Article  CAS  PubMed  Google Scholar 

  26. Plotnikov EY, Kazachenko AV, Vyssokikh MY, Vasileva AK, Tcvirkun DV, Isaev NK, Kirpatovsky VI, Zorov DB. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int. 2007; 72(12):1493-1502. doi: https://doi.org/10.1038/sj.ki.5002568

    Article  CAS  PubMed  Google Scholar 

  27. Sharples EJ, Patel N, Brown P, Stewart K, Mota-Philipe H, Sheaff M, Kieswich J, Allen D, Harwood S, Raftery M, Thiemermann C, Yaqoob MM. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemiareperfusion. J. Am. Soc. Nephrol. 2004;15(8):2115-2124. doi: https://doi.org/10.1097/01.ASN.0000135059.67385.5D

    Article  CAS  PubMed  Google Scholar 

  28. Silachev DN, Isaev NK, Pevzner IB, Zorova LD, Stelmashook EV, Novikova SV, Plotnikov EY, Skulachev VP, Zorov DB. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney- to-brain cross-talk. PLoS One. 2012;7(12):e51553. doi: https://doi.org/10.1371/journal.pone.0051553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, Ritskes-Hoitinga M, Hooijmans CR, Warlé M. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS One. 2012;7(2):e32296. doi: https://doi.org/10.1371/journal.pone.0032296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu HH, Hsiao TY, Chien CT, Lai MK. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat. J. Biomed. Sci. 2009;16(1):19. doi: https://doi.org/10.1186/1423-0127-16-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zager RA, Burkhart KM, Gmur DJ. Postischemic proximal tubular resistance to oxidant stress and Ca2+ ionophore-induced attack. Implications for reperfusion injury. Lab. Invest. 1995;72(5):592-600.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Plotnikov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 171, No. 5, pp. 532-537, May, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, E.Y. Ischemic Preconditioning of the Kidney. Bull Exp Biol Med 171, 567–571 (2021). https://doi.org/10.1007/s10517-021-05270-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05270-9

Key Words

Navigation