Skip to main content
Log in

Key Immune Checkpoint PD-1/PD-L1 Signaling Pathway Components in the Blood Serum from Patients with Bone Tumors

  • ONCOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The levels of sPD-1 and sPD-L1 were analyzed in blood serum of 132 patients (age 14-70 years) with primary bone tumors: osteosarcoma (N=39), chondrosarcoma (N=42), Ewing sarcoma (N=9), chordoma (N=12), giant-cell bone tumor (GCBT) (N=16), benign neoplasms (N=14) and in and practically healthy subjects (age 19-58 years; N=27). sPD-L1 levels in all studied bone neoplasms were significantly higher than in the control. Serum sPD-1 level in GCBT patients was significantly higher than in the control, benign neoplasms, chondrosarcoma, and chordoma patients, but did not differ from osteosarcoma group. sPD-1 concentration in Ewing sarcoma was significantly higher than in chordoma and chondrosarcoma, but did not differ from the control. sPD-1 level in chondrosarcoma patients was also lower than in osteosarcoma, Ewing sarcoma, and in the control. Both sPD-1 and sPD-L1 concentrations were not significantly associated with the type of affected bone, process localization, disease stage, tumor histological grade, patients’ age and sex. These results suggest the possibility of using these biological markers for preliminary assessment of the character of the process in the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gershtein ES, Utkin DO, Goryacheva IO, Khulamkhanova MM, Petrikova NA, Vinogradov II, Alferov AA, Stilidi IS, Kushlinskii NE. Soluble forms of immune checkpoint receptor PD-1 and its ligand PD-L1 in plasma of patients with ovarian neoplasms. Al’manakh Klin. Med. 2018;46(7):690-698. Russian.

    Article  Google Scholar 

  2. Ding Y, Sun C, Li J, Hu L, Li M, Liu J, Pu L, Xiong S. The Prognostic significance of soluble programmed death ligand 1 expression in cancers: a systematic review and meta-analysis. Scand. J. Immunol. 2017;86(5):361-367.

    Article  CAS  Google Scholar 

  3. Guo X, Wang J, Jin J, Chen H, Zhen Z, Jiang W, Lin T, Huang H, Xia Z, Sun X. High serum level of soluble programmed death ligand 1 is associated with a poor prognosis in Hodgkin lymphoma. Transl. Oncol. 2018;11(3):779-785.

    Article  Google Scholar 

  4. Huang HF, Zhu H, Yang XT, Guo XY, Li SS, Xie Q, Tian XB, Yang Z. Progress in research on tumor immune PD-1/PD-L1 signaling pathway in malignant bone tumors. Zhonghua Zhong Liu Za Zhi. 2019;41(6):410-414.

    CAS  PubMed  Google Scholar 

  5. Kabir TF, Chauhan A, Anthony L, Hildebrandt GC. Immune Checkpoint Inhibitors in Pediatric Solid Tumors: Status in 2018. Ochsner J. 2018;18(4):370-376.

    Article  Google Scholar 

  6. Kim HJ, Park S, Kim KJ, Seong J. Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular carcinoma patients treated with radiotherapy. Radiother. Oncol. 2018;129(1):130-135.

    Article  CAS  Google Scholar 

  7. Kushlinskii NE, Gershtein ES, Morozov AA, Goryacheva IO, Filipenko ML, Alferov AA, Bezhanova SD, Bazaev VV, Kazantseva IA. Checkpoint Receptor (sPD-L1) in Blood Serum of Patients with Renal Cell Carcinoma. Bull. Exp. Biol. Med. 2019;166(3):353-357.

    Article  CAS  Google Scholar 

  8. Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 2014;588(2):368-376.

    Article  CAS  Google Scholar 

  9. Nagato T, Ohkuri T, Ohara K, Hirata Y, Kishibe K, Komabayashi Y, Ueda S, Takahara M, Kumai T, Ishibashi K, Kosaka A, Aoki N, Oikawa K, Uno Y, Akiyama N, Sado M, Takei H, Celis E, Harabuchi Y, Kobayashi H. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol. Immunother. 2017;66(7): 877-890.

    Article  CAS  Google Scholar 

  10. Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 2015;23:32-38.

    Article  CAS  Google Scholar 

  11. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin. Cancer Res. 2018;24(4):896-905.

    Article  CAS  Google Scholar 

  12. Tsukahara T, Emori M, Murata K, Mizushima E, Shibayama Y, Kubo T, Kanaseki T, Hirohashi Y, Yamashita T, Sato N, Torigoe T. The future of immunotherapy for sarcoma. Expert. Opin. Biol. Ther. 2016;16(8):1049-1057.

    Article  CAS  Google Scholar 

  13. Unni KK, Inwards CY. Dahlin’s Bone Tumors: General Aspects and Data on 10,165 Cases. Philadelphia, 2006.

  14. Wei W, Xu B, Wang Y, Wu C, Jiang J, Wu C. Prognostic significance of circulating soluble programmed death ligand-1 in patients with solid tumors: A meta-analysis. Medicine (Baltimore). 2018;97(3):e9617. doi: https://doi.org/10.1097/MD.0000000000009617

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhu X, Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017;8(57):97,671-97,682.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kushlinskii.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 7, pp. 79-83, July, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushlinskii, N.E., Alferov, A.A., Timofeev, Y.S. et al. Key Immune Checkpoint PD-1/PD-L1 Signaling Pathway Components in the Blood Serum from Patients with Bone Tumors. Bull Exp Biol Med 170, 64–68 (2020). https://doi.org/10.1007/s10517-020-05005-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-05005-2

Key Words

Navigation