Skip to main content
Log in

Contribution of Hydrogen Sulfide to Dilation of Rat Cerebral Arteries after Ischemia/Reperfusion Injury

  • PHYSIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The study examined the effect of H2S on the tone of cerebral arteries in rats after global cerebral ischemia/reperfusion injury and cooperation between NO and H2S in the control over cerebral circulation during the postischemic period. In control sham-operated and in experimental rats with ischemia/reperfusion injury, the diameter of pial arteries was repeatedly measured in vivo under a light microscope after removal of parietal bone and dura mater in 1 h and in 7 days after the surgery. The study established that H2S is an important signaling molecule in pial arteries, where it is responsible for vasodilation. Interaction of H2S and NO augmented dilation of pial arteries; in these arteries, H2S up-regulated the effect of NO/cGMP/sGC/PKG signaling pathways. Partially, the dilating effect of H2S is realized via activation of ATP-sensitive K+ channels in plasmalemma of smooth muscle cells. In the brain, ischemia/reperfusion injury degrades the ability of pial arteries to dilate via inhibition of NO-mediated signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arai K, Lok J, Guo S, Hayakawa K, Xing C, Lo EH. Cellular mechanisms of neurovascular damage and repair after stroke. J. Child. Neurol. 2011;26(9):1193-1198.

    Article  Google Scholar 

  2. Auer W, Muchitsch EM, Philapitsch A, Pichler L, Schwarz HP. Studies on the effect of human lys-plasminogen in a rat model of global cerebral ischemia. Arzneimittelforschung. 1997;47(11):1195-1199.

    PubMed  CAS  Google Scholar 

  3. Cortese-Krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide. 2015;46):14-24.

  4. Cruz-Flores S. Acute stroke and transient ischemic attack in the outpatient clinic. Med. Clin. North Am. 2017;101(3):479-494.

    Article  Google Scholar 

  5. Gheibi S, Aboutaleb N, Khaksari M, Kalalian-Moghaddam H, Vakili A, Asadi Y, Mehrjerdi F.Z, Gheibi A. Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia. J. Mol. Neurosci. 2014;54(2):264-270.

  6. Hadadha M, Vakili A, Bandegi AR. Effect of the inhibition of hydrogen sulfide synthesis on ischemic injury and oxidative stress biomarkers in a transient model of focal cerebral ischemia in rats. J. Stroke Cerebrovasc. Dis. 2015;24(12):2676-2684.

    Article  Google Scholar 

  7. Han J, Chen ZW, He GW. Acetylcholine- and sodium hydrosulfide-induced endothelium-dependent relaxation and hyperpolarization in cerebral vessels of global cerebral ischemia-reperfusion rat. J. Pharmacol. Sci. 2013;121(4):318-326.

    Article  CAS  Google Scholar 

  8. Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am. J. Physiol. Cell Physiol. 2017;312(5):C537-C549.

    Article  Google Scholar 

  9. Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem. Pharmacol. 2013;85(5):689-703.

    Article  CAS  Google Scholar 

  10. Kimura H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide. 2014;41:4-10.

    Article  CAS  Google Scholar 

  11. Ren C, Du A, Li D, Sui J, Mayhan WG, Zhao H. Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats. Brain Res. 2010;1345:197-205.

    Article  CAS  Google Scholar 

  12. Sen N. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J. Mol. Biol. 2017; 429(4):543-561.

    Article  CAS  Google Scholar 

  13. Wang R. Signaling pathways for the vascular effects of hydrogen sulfide. Curr. Opin. Nephrol. Hypertens. 2011;20(2):107-112.

    Article  CAS  Google Scholar 

  14. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 2015;4(6). ID 001140. https://doi.org/10.1161/JAHA.114.001140

  15. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001;20(21):6008-6016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lobov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 168, No. 11, pp. 532-536, November, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobov, G.I., Sokolova, I.B., Gorshkova, O.P. et al. Contribution of Hydrogen Sulfide to Dilation of Rat Cerebral Arteries after Ischemia/Reperfusion Injury. Bull Exp Biol Med 168, 597–601 (2020). https://doi.org/10.1007/s10517-020-04759-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04759-z

Key Words

Navigation