Skip to main content
Log in

Study of Interactions between DNA and Tetrapeptides Study of Interactions between DNA and Tetrapeptides

  • BIOGERONTOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Tetrapeptide Lys-Glu-Asp-Trp is a mimetic of insulinotropic peptides and reduces the blood glucose level. This tetrapeptide increases the content of important factors of differentiation in endocrine pancreatic cells in vitro. Molecular modeling shows that this tetrapeptide can interact with not only minor, but also major groove of DNA molecule. The interaction with the major groove is more specific, because it depends on the primary sequences of the tetrapeptide and DNA. Sequence GGCAG is the putative binding site for the tetrapeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kh. Khavinson, A. O. Durnova, V. O. Polyakova, et al., Bull. Exp. Biol. Med., 154, No. 4, 501-504 (2012).

    Article  CAS  Google Scholar 

  2. V. N. Anisimov and V. Kh. Khavinson, Biogerontology, 11, No. 2, 139-149 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. A. C. Cheng, W. W. Chen, C. N. Fuhrmann, and A. D. Frankel, J. Mol. Biol., 327, No. 4, 781-796 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. A. Chung, F. Eudes, and Y.-S. Shim, IUBMB Life, 62, No. 3, 183-193 (2010).

    Article  CAS  Google Scholar 

  5. B. H. Geierstanger, M. Mrksich, P. B. Dervan, and D. E. Wemmer, Science, 266, 646-650 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. N. A. Halgren and R. B. Nachbar, J. Comput Chem., 17, 587-615 (1996).

    CAS  Google Scholar 

  7. H. Huang, I. D. Kozekov, A. Kozekova, et al., Biochemistry, 49, No. 29, 6155-6164 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. V. Kh. Khavinson and V. V. Malinin, Gerontological Aspects of Genome Peptide Regulation, Basel (2005).

  9. V. Kh. Khavinson, A. Yu.Solov’ev, D. V. Zhilinskii, et al., Adv. Gerontol., 2, No. 4, 11-22 (2012).

    Article  Google Scholar 

  10. N. M. Luscombe, R. A. Laskowski, and J. M. Thornton, Nucleic Acids Res., 29, No. 13, 2860-2874 (2001).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. P. E. MacDonald, W. El-kholy, M. J. Riedel, et al., Diabetes, 51, Suppl. 3, S434-S442 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Molecular Operating Environment; Chemical Computing Group Inc (2012) 1010 Sherbooke St. West, Suite No. 910, Montreal, QC, Canada, H3A 2R7.

  13. S. Ryu, S. Zhou, A. G. Ladurner, and R. Tjian, Nature, 397, 446-450 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. S. Trabulo, A. L. Cardoso, M. Mano, and M. C. PedrosoDelima, Pharmaceuticals, 3, No. 4, 961-993 (2010).

    Article  CAS  Google Scholar 

  15. V. Kh. Khavinson, V. V. Malinin, E. I. Grigoriev, and G. A. Ryzhak, USA Patent US 7,491,703. Tetrapeptide regulating blood glucose level in diabetes mellitus, (17.02.2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Tarnovskaya.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 156, No. 11, pp. 637-641, November, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnovskaya, S.I., Yakutseni, P.P. & Khavinson, V.K. Study of Interactions between DNA and Tetrapeptides Study of Interactions between DNA and Tetrapeptides. Bull Exp Biol Med 156, 689–693 (2014). https://doi.org/10.1007/s10517-014-2426-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-014-2426-z

Key Words

Navigation