Skip to main content
Log in

The Use of Catalytic Carbon Deposits as 3D Carriers for Human Bone Marrow Stromal Cells

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the possibility of using 3D structures based on carbon catalytic deposits as carriers for human bone marrow stromal cells. It was found that carbon catalytic deposits obtained by gas deposition method using FeCl3 × 6H2O as the catalyst are a biocompatible material for human bone marrow stromal cells promoting adhesion, proliferation, and distribution of cells within the 3D carrier, and therefore can be used for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Gurin, I. V. Gurin, and V. V. Kolosenko, et al., Pis’ma v Zh. Tekhn. Fiziki,No. 12, 83–94 (2007).

  2. V. A. Gurin, I. V. Gurin, and D. A. Levin, Vopr. Atomn. Nauki I Takhniki, 85, No. 3, 81–86 (2004).

    Google Scholar 

  3. A. A. Tyazhelov, L. D. Goridova, V. I. Tarasenko, et al., Ukr. Med. Al’manakh., 3, 116–121 (2004).

    Google Scholar 

  4. D. Adams, D.F. Williams, and J. Hill, J. Biomed. Mater. Res., 12, No. 1, 35–42 (1978).

    Article  PubMed  CAS  Google Scholar 

  5. A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai, J. Phys. Chem. B, 103, No. 31, 6484–6492 (1999).

    Article  CAS  Google Scholar 

  6. U. K. Debnath, J. A. Fairclough, and R. L. Williams, The Knee. 11, No. 4, 259–264 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. I. W. Forster, Z. A. Ralis, B. McKibbin, and D. H. R. Jenkins, Clin. Orthop. Relat. Res., 131, 299–307 (1978).

    Google Scholar 

  8. B. S. Harrison and A. Atala, Biomaterials, 28, No. 1, 344–353 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. C. Journet, W. K. Maser, P. Bernier, et al., Nature, 388, No. 6644, 756–758 (1997).

    Article  CAS  Google Scholar 

  10. M. Lewandowska-Szumiely, J. Komender, and J. Chlyopek, J. Biomed. Mater. Res. (Appl. Biomater.), 48, No. 3, 289–296 (1999).

    Article  Google Scholar 

  11. Yu. A. Petrenko, N. A. Gorokhova, E. N. Tkachova, and A. Yu. Petrenko, Ukr. Biokhim. Zh., 77, No. 5, 100–105 (2005).

    PubMed  CAS  Google Scholar 

  12. M. F. Pittenger, A. M. Mackay, S. C. Beck, et al., Science, 284, No. 5411, 143–147 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. R. L. Price, K. M. Haberstroh, and T. J. Webster, Med. Biol. Eng. Comput., 41, No. 3, 372–375 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. A. Thess, R. Lee, P. Nikolaev et al., Science, 273, 483–282 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. W. Wang, F. Watari, M. Omori, et al., J. Biomed. Mater. Res. (Appl. Biomater.), 82B, 223–230 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Petrenko.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 106–109, April, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrenko, Y.A., Gurin, I.V., Volkova, N.A. et al. The Use of Catalytic Carbon Deposits as 3D Carriers for Human Bone Marrow Stromal Cells. Bull Exp Biol Med 151, 539–542 (2011). https://doi.org/10.1007/s10517-011-1376-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-011-1376-y

Key Words

Navigation